35 resultados para passivation
Resumo:
Pós-graduação em Química - IQ
Resumo:
Recasting process influence upon corrosion behavior of Co-Cr-Mo dental alloy in simulated physiological serum has been investigated using chemical and electrochemical techniques. Recast Co-Cr-Mo alloy by induction (IND) or by blowtorch (FLAME) has exhibited similar dendritic structures. Both IND and FLAME alloys have presented good corrosion resistance in physiological serum. Passivation process provides this corrosion resistance. Codissolution makes this process difficult. Passive films, formed on these alloys, have been analyzed as a dual layer consisting of an inner barrier and an outer porous layer. Passive film protective characteristics are higher in FLAME than in IND alloy. On this last alloy, the passive film is more porous due to a higher Codissolution. ©Carl Hanser Verlag, München.
Resumo:
The electrochemical behaviour of copper in 6.0 mol 1-1 sulfuric acid at 30°C, was studied by means of the potentiodynamic method. At low potential sweep rates, v < 200 m V s-1, the data reveal that the anodic process is basically constituted of copper dissolution and a film formation which inhibits further metal oxidation and which may undergo further dissolution. For higher potential sweep rates, a modification in the passivation region of the voltammogram is observed. It can be ascribed to a change in the passivation mechanism which possibly involves different surface species. The kineticrelationships derived from the potentiodynamic I/E curves obtained at low v suggest a film formation via a dissolution/precipitation mechanism. © 1993.
Resumo:
Using the sol-gel process, organic-inorganic hybrid coatings were synthesized by incorporation of different concentrations of functionalized carbon nanotubes, to improve their mechanical strength and thermal resistance without changing its passivation character. The siloxane-PMMA hybrids were prepared by radical polymerization of methyl methacrylate (MMA) with 3-methacryloxipropiltrimethoxisilane (MPTS) using the thermal initiator benzoyl peroxide (BPO), followed by acid catalyzed hydrolysis and condensation of tetraethoxysilane (TEOS). The analysis of pristine and functionalized carbon nanotubes was carried out using Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Raman Spectroscopy. Structural analysis of hybrids was performed by Nuclear Magnetic Resonance, Atomic Force Microscopy and Raman Spectroscopy. For analysis of mechanical strength and thermal stability were performed mechanical compression tests and thermogravimetric analysis, respectively. Electrochemical Impedance Spectroscopy was used to evaluate the corrosion resistance in saline environment. The results showed an effective functionalization of carbon nanotubes with carboxyl groups and conservation of its structure. The hybrids showed high siloxane network connectivity and roughness of approximately 0.3 nm. The incorporation of carbon nanotubes in the hybrid matrix did not change significantly their thermal stability. Samples containing carbon nanotubes exhibit good corrosion resistance (on the order of MΩ in saline environment), but the lack of complete dispersion of carbon nanotubes in the hybrid, resulted in a loss of mechanical and corrosion resistance compared to hybrid matrix.
Resumo:
A large number of metal alloys are used in Dentistry for the manufacture of fixed and removable dentures. In the oral cavity, these structures are exposed to a chemically aggressive medium, like saliva and mechanical efforts, like mastication. In addition, acidic solutions containing fluoride ions are also frequently used in dental treatments to prevent dental plates and decays development. In this context, it was considered important to investigate the influence that a fourth element could exert when added to the ternary alloy Ni-Cr-Mo, largely used in Brazil. Therefore, electrochemical tests were done to evaluate the resistance to corrosion of quaternary alloy 65Ni-25Cr-5Mo-5Ta and 65Ni-25Cr-5Mo-5W in NaF solution 0,08mol / L, pH = 4.7. For greater understanding the microstructure and morphology of alloys were studied, through metallographic analysis, using optics microscopy and electron microscopy scanning. For the electrochemical tests were applied techniques traditionally used in corrosion researches, such as: potential measures in open circuit (OCP) and cyclic polarization (CP). It was found that both quaternary alloys showed very similar results. Comparing these quaternary alloys with the ternary 65Ni-25Cr-10Mo, it was found that the quaternary alloys exhibit greater resistance to corrosion, in other words, less passivation current density than the ternary alloy, showing that it is advantageous to add a fourth element in the alloy