130 resultados para ozone treatments
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Statement of the Problem: the ceramic composition and surface microstructure of all-ceramic restorations are important components of an effective bonding substrate. Hydrofluoric acid and sandblasting are well-known procedures for surface treatment; however, surface treatment for high alumina-containing and lithium disilicate ceramics have not been fully investigated.Purpose: This in vitro study evaluated the tensile bond strength of resin cement to two types of ceramic systems with different surface treatments.Methods and Materials: Thirty specimens of each ceramic system were made according to the manufacturer's instructions and embedded in polyester resin. Specimens of In-Ceram Alumina [1] and IPS Empress 2 [E] were distributed to three groups with differing surface treatments (n=10): sandblasting with 50 jam aluminum oxide (APA); sandblasting with 110 pm aluminum oxide modified with silica particles (ROCATEC System-RS); a combination of sandblasting with APA and 10% hydrofluoric acid etching (HA) for two minutes on In-Ceram and for 20 seconds for IPS Empress 2. After the respective surface treatments, all the specimens were silanated, and Rely-X resin cement was injected onto the ceramic surface and light polymerized. The specimens were stored in distilled water at 37 degrees C for 24 hours and thermally cycled 1,100 times (5 degrees C/55 degrees C). The tensile bond strength test was performed in a universal testing machine at a 0.5 mm/minute crosshead speed.Results: the mean bond strength values (AWa) for IPS Empress 2 were 12.01 +/- 5.93 (EAPA), 10.34 +/- 1.77 (ERS) and 14.49 +/- 3.04 (EHA). The mean bond strength values for In-Ceram Alumina were 9.87 +/- 2.40 JAPA) and 20.40 +/- 6.27 (IRS). All In-Ceram specimens treated with 10% hydrofluoric acid failed during thermal cycling.Conclusion: the Rocatec system was the most effective surface treatment for In-Ceram Alumina ceramics; whereas, the combination of aluminum oxide sandblasting and hydrofluoric acid etching for 20 seconds worked more effectively for Empress 2 ceramics.
Resumo:
Ozone monitoring techniques utilize expensive instruments that are often large and heavy. These instruments are not easy to handle in the field, and their size also limits some sampling schemes, principally for indoor ozone determination. We have developed a lightweight, inexpensive, and sensitive method that offers flexibility to undertake measurements of ambient ozone in many environments, both indoor and outdoor. The method is based on the reaction of ozone with indigo blue dye. The indigo molecule contains 1 carbon double bond (C = C) that reacts with ozone and results in nearly colorless reaction products. During sample collection, 2 cellulose filters coated with 40 mu L of 1.0 x 10(-3) M indigo blue were used. The determinations were done spectrophotometrically at 250 and 600 nm. The analytical parameters studied were sampling time and flow rate. Analytical curves were constructed with concentrations ranging from 37 to 123 parts per billion by volume (ppbv) of standard ozone, at 0.4 L/min and 15 min sampling time. The detection limits achieved were 6 and 9 ppbv, respectively, at 250 and 600 nm. Considering interferences, measurements made at 250 nm gave more reliable and specific values for ozone.
Resumo:
Objective: the purpose of this study was to evaluate the effect of two post-polymerisation treatments and different cycles of polymerisation on the cytotoxicity of two denture base resins.Materials and methods: the resins tested were Lucitone 550 and QC 20. Discs of resins were fabricated following the manufacturer's instructions. Lucitone 550 was processed by long cycle or short cycle. The resin QC 20 was processed by reverse cycle or normal cycle. The specimens were divided into groups: (i) post-polymerised in microwave for 3 min at 500 W; (ii) post-polymerised in water-bath at 55 degrees C for 60 min and (iii) without post-polymerisation. Eluates were prepared by placing three discs into a sterile glass vial with 9 ml of Eagle's medium and incubated at 37 degrees C for 24 hours. L929 cells were seeded into 96 3 well culture plates and DNA synthesis was assessed by H-thymidine incorporation assay.Results: the results were submitted to two-way ANOVA and Tukey HSD test. QC 20 specimens polymerised by the normal cycle and submitted to microwave post-polymerisation were graded as moderately cytotoxic. Similar results were observed for Lucitone 550 processed by long cycle without post-polymerisation. The other experimental groups were graded as not cytotoxic. After water-bath post-polymerisation, specimens of Lucitone 550 processed by long cycle produced significantly lower inhibition of DNA synthesis than the other groups.Conclusion: the long cycle increased the cytotoxicity of Lucitone 550 and water-bath post-polymerisation reduced the cytotoxicity of Lucitone 550 processed by long cycle.
Resumo:
Objectives. This study compared the residual monomer (RM) in four hard chair-side reline resins (Duraliner II-D, Kooliner-K, Tokuso Rebase Fast-TRF and Ufi Gel hard-UGH) and one heat-polymerized denture base resin (Lucitone 550-L), which was processed using two polymerization cycles (short-LS and long-LL). It was also investigated the effect of two after polymerization treatments on this RM content.Methods. Specimens (n = 18) of each material were produced following the manufacturers' instructions and then divided into three groups. Group I specimens were left untreated (GI-control). Specimens of group II (GII) were given post-polymerization treatment by microwave irradiation. In group III (GIII), specimens were submitted to immersion in water at 55 degrees C (reline resins-10 min; denture base resin L-60min). The RM was analyzed using high performance liquid chromatography (HPLC) and expressed as a percentage of RM. Data were analyzed by two-way ANOVA followed by Tukey's test (alpha = 0.05).Results. Comparing control specimens, statistical differences were found among all materials (p < 0.05), and the results can be arranged as K (1.52%) > D (0.85%) > UGH (0.45%) > LL (0.24%) > TRF (0.14%) > LS (0.08%). Immersion in hot water (GIII) promoted a significant (p < 0.05) reduction in the RM for all materials evaluated compared to control (GI), with the exception of LL specimens. Materials K, UGH and TRF exhibited significantly (p < 0.05) lower values of RM after microwave irradiation (GII) than in the control specimens.Significance. The reduction in RM promoted by water-bath and microwave post-polymerization treatments could improve the mechanical properties and biocompatibility of the relining and denture base materials. (c) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
We present a fast procedure for scanning electron microscopy (SEM) analysis in which hexamethyldisilazane (HMDS) solvent, instead of the critical point drying, is used to remove liquids from a microbiological specimen. The results indicate that the HMDS solvent is suitable for drying samples of anaerobic cells for examination by SEM and does not cause cell structure disruption.
Resumo:
Noncrystalline silica was obtained with low iron, sodium, and nitrate ions concentrations from soluble sodium silicate (water glass) and nitric acid solution. Extractions with nitric acid solution and/or deionized water and/or dialysis were carried out to eliminate soluble metal ions. Products were dried in a microwave oven and characterized by chemical analysis, XRD, and IR. Dialysis seems to be the best treatment for the elimination of sodium and nitrate ions. Silica purified by nitric acid and water extractions followed by dialysis yields the purest silica sample.