81 resultados para optical pH sensor
Resumo:
The use of Saccharomyces cerevisiae as a substrate to selectively retain Sn(II) and Sn(IV) has been investigated. Several factors affecting the retention of the analytes by yeast, such as pH, amount of biomass, temperature and time of contact were evaluated. Based on this study, a method for determination of Sn(II) and Sn(IV) combining inductively coupled plasma optical emission spectrometry (ICP OES) and solid phase extraction using Saccharomyces cerevisiae is proposed. The procedure consists of the selective retention of Sn(IV) by yeast at pH = 2.0 while Sn(II) remains in solution. Determination of tin in the solid phase was easily carried out by submitting a slurry of the yeast (0.5 g/40 mL) directly to ICP OES. The precision of the extraction procedure was characterized by an RSD lower than 4%. The detection limits of tin (3 sigma) in the solid phase and the liquid phase were 1.1 and 0.7 mu g L-1, respectively. The proposed approach was evaluated for determination of Sn(II) and Sn(IV) in spiked river water and real samples of industrial waste water (untreated and treated). For all samples, recoveries of spiked Sn(II) and Sn(IV) were between 85 and 112%.
Resumo:
The use of Saccharomyces cerevisiae as a sorbent material to separate Cd(II) and Cd-metallothionein complex (Cd-MT) has been explored. Solid-liquid phase extractions were carried out in batch mode and the main parameters of the process (pH, temperature, time of incubation, amount of biomass and analyte) were evaluated. Under optimized conditions, the yeast quantitatively retain (94 +/- 5%) the Cd(II) while 97 +/- 2% of the Cd-MT remain in the supernatant. on base of the findings of this study, a simple method is proposed to determine Cd(II) and Cd-MT in cytosols extracted from mouse kidney and crab hepatopancreas. Inductively coupled plasma optical emission spectrometry was used to quantify the analytes in solid and liquid phase. Determination of Cd in the solid phase was carried out by introducing a slurry of the yeast (0.0625 g/10 mL) directly to the inductively coupled plasma optical emission spectrometer. Mixed standards solutions, which also have been submitted to the extraction procedure, were used to quantify the analytes in the samples. Thus, matrix effects due to nebulization of the slurry were overcame. Limits of detection (3 sigma) for Cd(II) and Cd-MT were 1.5 and 1.2 mu g L-1, respectively. Relative standard deviations of signals were 4.2% for measurements in the slurry of solid phase and 2.1% for measurements in the liquid phase. Recoveries of the analytes in cytosol samples were between 76 and 114%. The concentrations of Cd(II) (2.4 +/- 0.5 mu g L-1) and Cd-MT (3.0 +/- 0.5 mu g L-1) found by using the proposed approach were close to those found by tangential-flow ultrafiltration technique (2.6 +/- 0.7 mu g L-1 for Cd(II) and 3.7 +/- 1.7 mu g L-1 for Cd-MT).
Resumo:
The characteristics, performance, and application of a novel and simple electrode, namely Pt vertical bar Hg vertical bar Hg-2(MF)(2)vertical bar Graphite, where MF stands for mefenamate ion, are described. This electrode responds to MF with sensitivity of (58.9 +/- 0.7) mV decade(-1) over the range 1.0 x 10(-6) to 1.0 x 10(-2) mol L-1 at pH 6.0-9.0 and a detection limit of 6.2 x 10(-7) mol L-1. The electrode is easily constructed at a relatively low cost with fast response time (within 10-25 s) and can be used for a period of 4 months without significant change in its performance characteristics. The proposed sensor displayed good selectivity for mefenamate in the presence of several substances, especially concerning carboxylate and inorganic anions. The potentiometric sensor was successfully applied to the determination of mefenamic acid in pharmaceuticals and human serum samples. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Sodium nitroprusside (NP), a commercial vasodilator, can be pre-concentrated on vitreous carbon electrode modified by films of 97.5%: 2.5% Poly-L-lysine (PLL): glutaraldehyde (GA). This coating gives acceptable anion exchange properties whilst giving the required improvement of adhesion to the glassy carbon electrode surface. Linear response range and detection limit on nitroprusside in B-R buffer pH 4.0, were 1 x 10(-6) to 2 x 10-(5) mol L-1 and 1 x 10(-7) mol L-1, respectively. The repeatability of the proposed sensor, evaluated in term of relative standard deviation, was measured as 4.1% for 10 experiments. The voltammetric sensor was directly applied to determination of nitroprusside in human plasma and urine samples and the average recovery for these samples was around 95-97% without any pre treatment.
Resumo:
The characteristics, performance, and application of an electrode, namely Pt| Hg|Hg-2(DCF)(2)|graphite, where DCF stands for diclofenac ion, are described. This electrode responds to diclofenac with sensitivity of (58.1 +/- 0.8) mV/decade over the range 5.0 x 10(-5) to 1.0 x 10(-2) Mol l(-1) at pH 6.5-9.0 and a detection limit of 3.2 x 10(-5) mol l(-1). The electrode is easily constructed at a relatively low cost with fast response time (within 10-30 s) and can be used for a period of 5 months without any considerable divergence in potentials. The proposed sensor displayed good selectivity for diclofenac in the presence of several substances, especially concerning carboxylate and inorganic anions. It was used to determine diclofenac in pharmaceutical preparations by means of the standard additions method. The analytical results obtained by using this electrode are in good agreement with those given by the United States Pharmacopeia procedures. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Levodopa (L-dopa), the biological precursor of catecholamines, is the most widely prescribed drug in the treatment of Parkinson's disease. The present work presents a proposal for the application of a gold screen-printed electrode an electrochemical sensor for monitoring L-dopa in stationary solution and a flow system. Using the electrooxidation of L-dopa at +0.63 V in acetate buffer pH 3.0 on a gold screen-printed electrode it is possible to obtain a linear calibration curve from 9.9 x 10(-5) to 1.2 x 10(-3) mol L-1 and a detection limit of 6.8 x 10(-5) mol L-1. Under amperometric conditions (E-app = 0.8 V; flow rate = 14.1 ml, min(-1); pH 3.0), an analytical calibration graph for L-dopa was obtained from 1.0 x 10(-6) mol L-1 6.6 x 10(-4) mol L-1 with a detection limit of 9.9 x 10(-7) mol L-1. The method was successfully applied to the determination of L-dopa in commercial dosage forms without any pre-treatment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Screen-printed carbon electrode (SPCE) modified with poly-L-histidine film can be successfully applied for chromium(VI) determination based on its pre-concentration. Optimum adherence and stability of the POIY-L-histidine film was obtained by direct addition of PH solution 1% (w/v) on the electrode surface, followed by heating at 80 degrees C during 5 min. Linear response range, sensitivity and limit of detection were 0. 1-150 [mu mol L-1, 4. 13 LA mu mol L` and 0.046 mu mol L-1. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation, was measured as 3.2% for 10 experiments in 40 mu mol L-1 using the same electrode and 4.0% using screen-printed electrode as disposable sensor, respectively. The voltammetric sensor was applied to determination of Cr(VI) and indirect determination of Cr(III) in wastewater samples previously treated by a leather dyeing industry and the average recovery for these samples was around 97%. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The brown alga Pilayella littoralis was used as a new biosorbent in an on-line metal preconcentration procedure in a flow-injection system. Al, Co, Cu and Fe were determined in lake water samples by inductively coupled plasma optical emission spectrometry (ICP-OES) after preconcentration in a silica-immobilized alga column. Like other algae, P. littoralis exhibited strong affinity for these metals proving to be an effective accumulation medium. Metals were bound at pH 5.5 and were displaced at pH < 2 with diluted HCl. The enrichment factors for Cu-II, Fe-III, Al-III and Co-II were 13, 7, 16 and 11, respectively. Metal sorption efficiency ranged from 86 to 90%. The method accuracy was assessed by using drinking water certified reference material and graphite furnace atomic absorption spectrometry (GFAAS) as a comparison technique. The column procedure allowed a less time consuming, easy regeneration of the biomaterial and rigidity of the alga provided by its immobilization on silica gel. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This paper reports the surface activity of phytase at the air-water interface, its interaction with lipid monolayers, and the construction of a new phytic acid biosensor on the basis of the Langmuir-Blodgett (LB) technique. Phytase was inserted in the subphase solution of dipalmitoylphosphatidylglycerol (DPPG) Langmuir monolayers, and its incorporation to the air-water interface was monitored with surface pressure measurements. Phytase was able to incorporate into DPPG monolayers even at high surface pressures, ca. 30 mN/m, under controlled ionic strength, pH, and temperature. Mixed Langmuir monolayers of phytase and DPPG were characterized by surface pressure-area and surface potential-area isotherms, and the presence of the enzyme provided an expansion in the monolayers ( when compared to the pure lipid at the interface). The enzyme incorporation also led to significant changes in the equilibrium surface compressibility (in-plane elasticity), especially in liquid-expanded and liquid-condensed regions. The dynamic surface elasticity for phytase-containing interfaces was investigated using harmonic oscillation and axisymmetric drop shape analysis. The insertion of the enzyme at DPPG monolayers caused an increase in the dynamic surface elasticity at 30 mN m(-1), indicating a strong interaction between the enzyme and lipid molecules at a high-surface packing. Langmuir-Blodgett (LB) films containing 35 layers of mixed phytase-DPPG were characterized by ultraviolet-visible and fluorescence spectroscopy and crystal quartz microbalance nanogravimetry. The ability in detecting phytic acid was studied with voltammetric measurements.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work describes the construction and application of a biomimetic sensor for paracetamol determination in different samples. The sensor was prepared by modifying a glassy carbon electrode surface with a Nafion (R) membrane doped with FeTPyPz. The best performance of the sensor in 0.1 mol L-1 acetate buffer was at pH 3.6. Under these conditions, an oxidation potential of paracetamol was observed at 445 mV vs. Ag vertical bar AgCl. The sensor presented a linear response range between 4.0 and 420 mu mol L-1, a sensitivity of 46.015 mA L mol(-1) cm(-2), quantification and detection limits of 4.0 mu mol L-1 and 1.2 mu mol L-1, respectively. A detailed investigation about its electrochemical behavior and selectivity was carried out. The results suggested that FeTPyPz presents catalytic properties similar to P450 enzyme for paracetamol oxidation. Finally, the sensor was applied for paracetamol determination in commercial drugs and for the monitoring of its degradation in an electrochemical batch reactor effluent.
Resumo:
Satellite remote sensing of ocean colour is the only method currently available for synoptically measuring wide-area properties of ocean ecosystems, such as phytoplankton chlorophyll biomass. Recently, a variety of bio-optical and ecological methods have been established that use satellite data to identify and differentiate between either phytoplankton functional types (PFTs) or phytoplankton size classes (PSCs). In this study, several of these techniques were evaluated against in situ observations to determine their ability to detect dominant phytoplankton size classes (micro-, nano- and picoplankton). The techniques are applied to a 10-year ocean-colour data series from the SeaWiFS satellite sensor and compared with in situ data (6504 samples) from a variety of locations in the global ocean. Results show that spectral-response, ecological and abundance-based approaches can all perform with similar accuracy. Detection of microplankton and picoplankton were generally better than detection of nanoplankton. Abundance-based approaches were shown to provide better spatial retrieval of PSCs. Individual model performance varied according to PSC, input satellite data sources and in situ validation data types. Uncertainty in the comparison procedure and data sources was considered. Improved availability of in situ observations would aid ongoing research in this field. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)