102 resultados para nonlinear control systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the dynamical interactions of a double pendulum arm and an electromechanical shaker is investigated. The double pendulum is a three degree of freedom system coupled to an RLC circuit based nonlinear shaker through a magnetic field, and the capacitor voltage is a nonlinear function of the instantaneous electric charge. Numerical simulations show the existence of chaotic behavior for some regions in the parameter space and this behaviour is characterized by power spectral density and Lyapunov exponents. The bifurcation diagram is constructed to explore the qualitative behaviour of the system. This kind of electromechanical system is frequently found in robotic systems, and in order to suppress the chaotic motion, the State-Dependent Riccati Equation (SDRE) control and the Nonlinear Saturation control (NSC) techniques are analyzed. The robustness of these two controllers is tested by a sensitivity analysis to parametric uncertainties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feasibility of nonlinear and adaptive control methodologies in multivariable linear time-invariant systems with state-space realization (A, B, C) is apparently limited by the standard strictly positive realness conditions that imply that the product CB must be positive definite symmetric. This paper expands the applicability of the strictly positive realness conditions used for the proofs of stability of adaptive control or control with uncertainty by showing that the not necessarily symmetric CB is only required to have a diagonal Jordan form and positive eigenvalues. The paper also shows that under the new condition any minimum-phase systems can be made strictly positive real via constant output feedback. The paper illustrates the usefulness of these extended properties with an adaptive control example. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we examine the nonlinear control method based on the saturation phenomenon and of systems coupled with quadratic nonlinear ties applied to a shear-building portal plane frame foundation that supports an unbalanced direct cut-rent with limited power supply (non-ideal system). We analyze the equations of motion by using the method of averaging and numerical simulation. The interaction of the non-ideal structure with the saturation controller may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the systems. Special attention is focused on passage through resonance when the non-ideal excitation frequency is near the portal frame natural frequency and when the non-ideal system frequency is approximately twice the controller frequency (two-to-one internal resonance).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some nonlinear differential systems in (2+1) dimensions are characterized by means of asymptotic modules involving two poles and a ring of linear differential operators with scalar coefficients.Rational and soliton-like are exhibited. If these coefficients are rational functions, the formalism leads to nonlinear evolution equations with constraints. © 1989.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with a stochastic optimal control problem involving discrete-time jump Markov linear systems. The jumps or changes between the system operation modes evolve according to an underlying Markov chain. In the model studied, the problem horizon is defined by a stopping time τ which represents either, the occurrence of a fix number N of failures or repairs (TN), or the occurrence of a crucial failure event (τΔ), after which the system is brought to a halt for maintenance. In addition, an intermediary mixed case for which T represents the minimum between TN and τΔ is also considered. These stopping times coincide with some of the jump times of the Markov state and the information available allows the reconfiguration of the control action at each jump time, in the form of a linear feedback gain. The solution for the linear quadratic problem with complete Markov state observation is presented. The solution is given in terms of recursions of a set of algebraic Riccati equations (ARE) or a coupled set of algebraic Riccati equation (CARE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The linear quadratic Gaussian control of discrete-time Markov jump linear systems is addressed in this paper, first for state feedback, and also for dynamic output feedback using state estimation. in the model studied, the problem horizon is defined by a stopping time τ which represents either, the occurrence of a fix number N of failures or repairs (T N), or the occurrence of a crucial failure event (τ δ), after which the system paralyzed. From the constructive method used here a separation principle holds, and the solutions are given in terms of a Kalman filter and a state feedback sequence of controls. The control gains are obtained by recursions from a set of algebraic Riccati equations for the former case or by a coupled set of algebraic Riccati equation for the latter case. Copyright © 2005 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents two discrete sliding mode control (SMC) design. The first one is a discrete-time SMC design that doesn't take into account the time-delay. The second one is a discrete-time SMC design, which takes in consideration the time-delay. The proposed techniques aim at the accomplishment simplicity and robustness for an uncertainty class. Simulations results are shown and the effectiveness of the used techniques is analyzed. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents two Variable Structure Controllers (VSC) for continuous-time switched plants. It is assumed that the state vector is available for feedback. The proposed control system provides a switching rule and also the variable structure control input. The design is based on Lyapunov-Metzler (LM) inequalities and also on Strictly Positive Real (SPR) systems stability results. The definition of Lyapunov-Metzler-SPR (LMS) systems and its direct application in the design of VSC for switched systems are introduced in this paper. Two examples illustrate the design of the proposed VSC, considering a plant given by a switched system with a switched-state control law and two linear time-invariant systems, that are not controllable and also can not be stabilized with state feedback. ©2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a control method for a class of continuous-time switched systems, using state feedback variable structure controllers. The method is applied to the control of a two-cell dc-dc buck converter and a control circuit design using the software PSpice is proposed. The design is based on Lyapunov-Metzler-SPR systems and the performance of the resulting control system is superior to that afforded by a recently-proposed alternative sliding-mode control technique. The dc-dc power converters are very used in industrial applications, for instance, in power systems of hybrid electric vehicles and aircrafts. Good results were obtained and the proposed design is also inexpensive because it uses electric components that can be easily found for the hardware implementation. Future researches on the subject include the hardware validation of the dc-dc converter controller and the robust control design of switched systems, with structural failures. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In last decades, control of nonlinear dynamic systems became an important and interesting problem studied by many authors, what results the appearance of lots of works about this subject in the scientific literature. In this paper, an Atomic Force Microscope micro cantilever operating in tapping mode was modeled, and its behavior was studied using bifurcation diagrams, phase portraits, time history, Poincare maps and Lyapunov exponents. Chaos was detected in an interval of time; those phenomena undermine the achievement of accurate images by the sample surface. In the mathematical model, periodic and chaotic motion was obtained by changing parameters. To control the chaotic behavior of the system were implemented two control techniques. The SDRE control (State Dependent Riccati Equation) and Time-delayed feedback control. Simulation results show the feasibility of the bothmethods, for chaos control of an AFM system. Copyright © 2011 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the H ∞ state-feedback control design problem of discretetime Markov jump linear systems. First, under the assumption that the Markov parameter is measured, the main contribution is on the LMI characterization of all linear feedback controllers such that the closed loop output remains bounded by a given norm level. This results allows the robust controller design to deal with convex bounded parameter uncertainty, probability uncertainty and cluster availability of the Markov mode. For partly unknown transition probabilities, the proposed design problem is proved to be less conservative than one available in the current literature. An example is solved for illustration and comparisons. © 2011 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we introduce the concept of MP-pseudoinvexity for general nonlinear impulsive optimal control problems whose dynamics are specified by measure driven control equations. This is a general paradigm in that, both the absolutely continuous and singular components of the dynamics depend on both the state and the control variables. The key result consists in showing the sufficiency for optimality of the MP-pseudoinvexity. It is proved that, if this property holds, then every process satisfying the maximum principle is an optimal one. This result is obtained in the context of a proper solution concept that will be presented and discussed. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a new switched control design method for some classes of linear time-invariant systems with polytopic uncertainties. This method uses a quadratic Lyapunov function to design the feedback controller gains based on linear matrix inequalities (LMIs). The controller gain is chosen by a switching law that returns the smallest value of the time derivative of the Lyapunov function. The proposed methodology offers less conservative alternative than the well-known controller for uncertain systems with only one state feedback gain. The control design of a magnetic levitator illustrates the procedure. © 2013 Wallysonn A. de Souza et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural damage identification is basically a nonlinear phenomenon; however, nonlinear procedures are not used currently in practical applications due to the complexity and difficulty for implementation of such techniques. Therefore, the development of techniques that consider the nonlinear behavior of structures for damage detection is a research of major importance since nonlinear dynamical effects can be erroneously treated as damage in the structure by classical metrics. This paper proposes the discrete-time Volterra series for modeling the nonlinear convolution between the input and output signals in a benchmark nonlinear system. The prediction error of the model in an unknown structural condition is compared with the values of the reference structure in healthy condition for evaluating the method of damage detection. Since the Volterra series separate the response of the system in linear and nonlinear contributions, these indexes are used to show the importance of considering the nonlinear behavior of the structure. The paper concludes pointing out the main advantages and drawbacks of this damage detection methodology. © (2013) Trans Tech Publications.