169 resultados para neutron powder diffraction


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, the observation of a new monoclinic phase in the PbZr1-xTixO3 (PZT) system in the vicinity of the morphotropic phase boundary was reported. Investigations of this new phase were reported using different techniques such as high-resolution synchrotron x-ray powder diffraction and Raman spectroscopy. In this work, the monoclinic --> tetragonal phase transition in PbZr0.50Ti0.50O3 ceramics was studied using infrared spectroscopy between 1000 and 400 cm(-1). The four possible nu(1)-stretching modes (Ti-O and Zr-O stretch) in the BO6 octahedron in the ABO(3) structure of PZT in this region were monitored as a function of temperature. The lower-frequency mode nu(1)-(Zr-O) remains practically unaltered, while both intermediate nu(1)-(Ti-O) modes decrease linearly as temperature increases from 89 to 263 K. In contrast, the higher-frequency nu(1)-(Ti-O) and nu(1)-(Zr-O) modes present anomalous behaviour around 178 K. The singularity observed at this mode was associated with the monoclinic --> tetragonal phase transition in PbZr0.50Ti0.50O3 ceramics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of calcination temperature during the formation of the solid solution Sn(0.9)Ti(0.1)O(2) doped with 1.00 mol % CoO and 0.05 mol % Nb(2)O(5) is presented. The structural characteristics of this system were studied using X-ray diffraction, and the changes in phase formation were analyzed using the Rietveld method. With an increase in calcination temperature, there is increasing miscibility of Ti into the (Ti,Sn)O(2) phase and near 1000 degrees C, and the remaining TiO(2) (anatase) was transformed into the rutile phase. The sintering process, monitored using dilatometry, suggests two mass transport mechanisms, one activated close to 900 degrees C associated with the presence of TiO(2) (anatase) and the second mechanism, occurring between 1200 and 1300 degrees C, is attributed to a faster grain boundary diffusion caused by oxygen vacancies. (C) 2008 International Centre for Diffraction Data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BaTiO(3) powders were prepared through mechanical activation chemistry and analyzed by Rietveld refinement with X-ray diffraction data. Raw BaCO(3) and TiO(2) powders were dry milled for 5 and 20 h and then calcinated for 2 and 4 h at 800 degrees C. The milling process was found to have broken up the BaCO(3) and TiO(2) crystals into smaller crystals and formed only small amounts ( 1.5 wt%) of BaTiO(3). Subsequence calcinations for 2 and 4 h at 800 degrees C successfully produced large amounts (>97.7 wt%) of BaTiO(3) crystals. The calcination process also generated microstrains and crystallite-size anisotropy in BaTiO(3). An increase in the calcination time from 2 to 4 h increased the BaTiO(3) weight percentage and the crystal lite-shape anisotropy, but decreased the tetragonal distortion anisotropic microstrains in BaTiO(3) crystals. (C) 2008 International Centre for Diffraction Data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pearlitic reaction in Cu-10wt%Al alloy with additions of 4, 6, 8, and 10wt%Ag was studied using scanning electron microscopy, energy dispersive X-ray microanalysis, in situ X-ray diffractometry, and microhardness measurements. The results indicated that the presence of Ag changes the pearlitic phase microstructure and its mechanical properties, because of the influence of Ag in the pearlitic phase growth mechanism. (C) 2008 International Centre for Diffraction Data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The presumably soluble KFe(+3)[Fe(2+)(CN)(6)] structure of electrochemically synthesized hexacyanoferrate materials (Prussian Blue) containing K(+) ions was determined for the first time in this study. Prior to drawing conclusions from a structural analysis, the main goal was to make a precise analysis of the inferred soluble structure, that is, KFe(+3) [Fe(2+)(CN)(6)], which is frequently referred to in the literature as the final stable electrochemically synthesized structure. Indeed, a successful X-ray powder diffraction experiment using X-ray synchrotron radiation was made of a powder placed in a 0.5 mm diameter borosilicate glass capillary, which was obtained by removing sixty 90 nm thin films from the substrates on which they were prepared. However, the conclusions were highly unexpected, because the structure showed that the [Fe(CN)61 group was absent from similar to 25% of the structure, invalidating the previously presumed soluble KFe(+3)[Fe(2+)(CN)(6)] structure. This information led to the conclusion that the real structure of Prussian Blue electrochemically synthesized after the stabilization process is Fe(4)[Fe(CN)(6)](3)center dot mH(2)O containing a certain fraction of inserted K(+) ions. In fact, based on an electrogravimetric analysis (Gimenez-Romero et al., J. Phys. Chem. B 2006, 110, 2715 and 19352) complemented by the Fourier maps. it is possible to affirm that the K(+) was part of the water crystalline substructure. Therefore, the interplay mechanism was reexamined considering more precisely the role played by the water crystalline substructure and the K+ alkali metal ion. As a final conclusion, it is proposed that the most precise way to represent the structure of electrochemically synthesized and stabilized hexacyanoferrate materials is Fe(4)(3+) Fe(2+)(CN)(6)](3)center dot[K(h)(+)center dot OH(h)(-)center dot mH(2)O]. The importance of this result is that the widespread use of the terms soluble and insoluble in the electrochemical literature could be reconsidered. Indeed, only one type of structure is insoluble, and that is Fe(4)[Fe(CN)(6)](3)center dot mH(2)O hence, the use of the terms soluble and insoluble is inappropriate from a structural point of view. The result of the presence of the [Fe(CN)61 vacancy a, roup is that the water Substructure cannot be ignored in the ionic interplay mechanism which controls the intercalation and redox process, as was previously confirmed by electrogravimetric analyses (Gimenez-Romero et al., J. Phys. Chem. B 2006, 110, 2715 Garcia-Jareno et al., Electrochim. Acta 1998, 44, 395: Kulesza, Inorg. Chem. 1990, 29, 2395).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Synthesis, spectroscopic characterization and thermal analysis of the [Pd(dmba)(Cl)(iso)] (1), [Pd(dmba)(NCO)(iso)] (2), [Pd(dmba)(N(3))(iso)] (3) and [Pd(dmba)(Br)(iso)] (4) (dmba = N,N'-dimethylbenzylamine; iso = isonicotinamide) compounds are described in this work. The complexes were investigated by infrared spectroscopy (IR), differential thermal analysis (DTA) and thermogravimetry (TG) and the residues of the thermal decomposition were identified as Pd(o) by X-ray powder diffraction. The thermal stability order of the complexes varied as [Pd(dmba)(Cl)(iso)] (1) > [Pd(dmba)(Br)(iso)] (4) > [Pd(dmba)(NCO)(iso)] (2) > [Pd(dmba)(N(3))(iso)] (3).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Palladium(II) coordination compounds of general formula trans-[PdX(2)(isn)(2)], X = Cl(-) (1), N(3) (-) (2), SCN(-) (3), NCO(-) (4), isn = isonicotinamide; were synthesized and characterized in solid state by elemental analysis, infrared spectroscopy, and simultaneous TG-DTA. TG experiments reveal that the compounds 1-4 undergo thermal decomposition in three or four stages, yielding Pd(0) as final residue, according to calculus and identification by X-ray powder diffraction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work describes the synthesis, IR and (13)C CPMAS NMR spectroscopic as well the thermal characterization of the new dicarboxylate complexes [Pd(2)(ox)(2)(4,4'-bipy)]n (1), [Pd(2)(ox)(2)(bpe)](n) (2) and [Pd(2)(ox)(2)(pz)](n) (3) {ox = oxalate, bipy = 4,4'-bipyridine, bpe = 1,2-bis(4-pyridyl)ethane, pz = pyrazine}. TG experiments reveal that compounds 1-3 undergo thermal decomposition in three steps. Metal palladium was the final product of the thermal decompositions, which was identified by X-ray powder diffraction.