47 resultados para implementations
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Fragmentos dos trilhos na paisagem de São Paulo: os brownfields ferroviários e sua refuncionalização
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In general, pattern recognition techniques require a high computational burden for learning the discriminating functions that are responsible to separate samples from distinct classes. As such, there are several studies that make effort to employ machine learning algorithms in the context of big data classification problems. The research on this area ranges from Graphics Processing Units-based implementations to mathematical optimizations, being the main drawback of the former approaches to be dependent on the graphic video card. Here, we propose an architecture-independent optimization approach for the optimum-path forest (OPF) classifier, that is designed using a theoretical formulation that relates the minimum spanning tree with the minimum spanning forest generated by the OPF over the training dataset. The experiments have shown that the approach proposed can be faster than the traditional one in five public datasets, being also as accurate as the original OPF. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
Huge image collections are becoming available lately. In this scenario, the use of Content-Based Image Retrieval (CBIR) systems has emerged as a promising approach to support image searches. The objective of CBIR systems is to retrieve the most similar images in a collection, given a query image, by taking into account image visual properties such as texture, color, and shape. In these systems, the effectiveness of the retrieval process depends heavily on the accuracy of ranking approaches. Recently, re-ranking approaches have been proposed to improve the effectiveness of CBIR systems by taking into account the relationships among images. The re-ranking approaches consider the relationships among all images in a given dataset. These approaches typically demands a huge amount of computational power, which hampers its use in practical situations. On the other hand, these methods can be massively parallelized. In this paper, we propose to speedup the computation of the RL-Sim algorithm, a recently proposed image re-ranking approach, by using the computational power of Graphics Processing Units (GPU). GPUs are emerging as relatively inexpensive parallel processors that are becoming available on a wide range of computer systems. We address the image re-ranking performance challenges by proposing a parallel solution designed to fit the computational model of GPUs. We conducted an experimental evaluation considering different implementations and devices. Experimental results demonstrate that significant performance gains can be obtained. Our approach achieves speedups of 7x from serial implementation considering the overall algorithm and up to 36x on its core steps.
Resumo:
This study presents the results from a qualitative resource, based on research-action methodology, which examined the innovate teaching practices implementations in the Calculus I during 2011 year. The analysis of collected data from three used sources – an initial questionnaire, an exploratory-investigative classroom, and an interview with some students at the end of the second semester – reveals that the students had appropriated of the technological recourses, using it as a tool to look for the knowledge. The investigative activities with the use of information technologies made the use of multiple representations in solving mathematical tasks, making the transition of numerical, algebraic and geometrical results possible for the students when they have looking for validation of their hypotheses and conjectures during mathematical problems solving. This works helped in the insertion of new practices in the discipline, and their results validate the proposal presented by the teacher, which is the discipline of Calculus use, whose character is strongly linked to the training content of the student, as a discipline whose can contributed to the pedagogical formation of the graduation student, leading him to know the Mathematical Education possibilities, specially the Mathematical Investigation - Solving Problems, in the outlook of dialogued classes where the teacher assumes the facilitator role and where the students become actives in their pursuit of knowledge
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we re-derive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literature: the time-flow formalism, and a background method where the soft mode is absorbed into a locally curved cosmology. The latter has been recently used to set up (angular averaged) 'equal-time consistency relations'. We explicitly demonstrate that the time-flow relations and 'equal-time consistency conditions'are only fulfilled at the linear level, and fail at next-to-leading order for an Einstein de-Sitter universe. While applied to the velocities both proposals break down beyond leading order, we find that the 'equal-time consistency conditions'quantitatively approximates the perturbative results for the density contrast. Thus, we generalize the background method to properly incorporate the effect of curvature in the density and velocity fluctuations on short scales, and discuss the reasons behind this discrepancy. We conclude with a few comments on practical implementations and future directions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this paper is to propose a definition of the term “green/environmental innovation”, based on a systematic literature review. Design/methodology/approach– The literature review conducted in this research was based on papers published in ISI Web of Science and Scopus databases. Findings– Environmental innovations are organizational implementations and changes focusing on the environment, with implications for companies’ products, manufacturing processes and marketing, with different degrees of novelty. They can be merely incremental improvements that intensify the performance of something that already exists, or radical ones that promote something completely unprecedented, where the main objective is to reduce the company's environmental impacts. In addition, environmental innovation has a bilateral relationship with the level of proactive environmental management adopted by companies. Increasing of environmental innovation tends to come up against many barriers.