9 resultados para implementations

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast–all while remaining functional.

This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of “active self-assembly” of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology’s numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules.

One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved.

One might think that because a system is Turing-complete, capable of computing “anything,” that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not “computations” in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface.

Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors “energetically incomplete” programmable behaviors. This class of behaviors includes any behavior where a passive physical system simply does not have enough physical energy to perform the specified tasks in the requisite amount of time.

As we will demonstrate and prove, a sufficiently expressive implementation of an “active” molecular self-assembly approach can achieve these behaviors. Using an external source of fuel solves part of the the problem, so the system is not “energetically incomplete.” But the programmable system also needs to have sufficient expressive power to achieve the specified behaviors. Perhaps surprisingly, some of these systems do not even require Turing completeness to be sufficiently expressive.

Building on a large variety of work by other scientists in the fields of DNA nanotechnology, chemistry and reconfigurable robotics, this thesis introduces several research contributions in the context of active self-assembly.

We show that simple primitives such as insertion and deletion are able to generate complex and interesting results such as the growth of a linear polymer in logarithmic time and the ability of a linear polymer to treadmill. To this end we developed a formal model for active-self assembly that is directly implementable with DNA molecules. We show that this model is computationally equivalent to a machine capable of producing strings that are stronger than regular languages and, at most, as strong as context-free grammars. This is a great advance in the theory of active self- assembly as prior models were either entirely theoretical or only implementable in the context of macro-scale robotics.

We developed a chain reaction method for the autonomous exponential growth of a linear DNA polymer. Our method is based on the insertion of molecules into the assembly, which generates two new insertion sites for every initial one employed. The building of a line in logarithmic time is a first step toward building a shape in logarithmic time. We demonstrate the first construction of a synthetic linear polymer that grows exponentially fast via insertion. We show that monomer molecules are converted into the polymer in logarithmic time via spectrofluorimetry and gel electrophoresis experiments. We also demonstrate the division of these polymers via the addition of a single DNA complex that competes with the insertion mechanism. This shows the growth of a population of polymers in logarithmic time. We characterize the DNA insertion mechanism that we utilize in Chapter 4. We experimentally demonstrate that we can control the kinetics of this re- action over at least seven orders of magnitude, by programming the sequences of DNA that initiate the reaction.

In addition, we review co-authored work on programming molecular robots using prescriptive landscapes of DNA origami; this was the first microscopic demonstration of programming a molec- ular robot to walk on a 2-dimensional surface. We developed a snapshot method for imaging these random walking molecular robots and a CAPTCHA-like analysis method for difficult-to-interpret imaging data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In three essays we examine user-generated product ratings with aggregation. While recommendation systems have been studied extensively, this simple type of recommendation system has been neglected, despite its prevalence in the field. We develop a novel theoretical model of user-generated ratings. This model improves upon previous work in three ways: it considers rational agents and allows them to abstain from rating when rating is costly; it incorporates rating aggregation (such as averaging ratings); and it considers the effect on rating strategies of multiple simultaneous raters. In the first essay we provide a partial characterization of equilibrium behavior. In the second essay we test this theoretical model in laboratory, and in the third we apply established behavioral models to the data generated in the lab. This study provides clues to the prevalence of extreme-valued ratings in field implementations. We show theoretically that in equilibrium, ratings distributions do not represent the value distributions of sincere ratings. Indeed, we show that if rating strategies follow a set of regularity conditions, then in equilibrium the rate at which players participate is increasing in the extremity of agents' valuations of the product. This theoretical prediction is realized in the lab. We also find that human subjects show a disproportionate predilection for sincere rating, and that when they do send insincere ratings, they are almost always in the direction of exaggeration. Both sincere and exaggerated ratings occur with great frequency despite the fact that such rating strategies are not in subjects' best interest. We therefore apply the behavioral concepts of quantal response equilibrium (QRE) and cursed equilibrium (CE) to the experimental data. Together, these theories explain the data significantly better than does a theory of rational, Bayesian behavior -- accurately predicting key comparative statics. However, the theories fail to predict the high rates of sincerity, and it is clear that a better theory is needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Technology scaling has enabled drastic growth in the computational and storage capacity of integrated circuits (ICs). This constant growth drives an increasing demand for high-bandwidth communication between and within ICs. In this dissertation we focus on low-power solutions that address this demand. We divide communication links into three subcategories depending on the communication distance. Each category has a different set of challenges and requirements and is affected by CMOS technology scaling in a different manner. We start with short-range chip-to-chip links for board-level communication. Next we will discuss board-to-board links, which demand a longer communication range. Finally on-chip links with communication ranges of a few millimeters are discussed.

Electrical signaling is a natural choice for chip-to-chip communication due to efficient integration and low cost. IO data rates have increased to the point where electrical signaling is now limited by the channel bandwidth. In order to achieve multi-Gb/s data rates, complex designs that equalize the channel are necessary. In addition, a high level of parallelism is central to sustaining bandwidth growth. Decision feedback equalization (DFE) is one of the most commonly employed techniques to overcome the limited bandwidth problem of the electrical channels. A linear and low-power summer is the central block of a DFE. Conventional approaches employ current-mode techniques to implement the summer, which require high power consumption. In order to achieve low-power operation we propose performing the summation in the charge domain. This approach enables a low-power and compact realization of the DFE as well as crosstalk cancellation. A prototype receiver was fabricated in 45nm SOI CMOS to validate the functionality of the proposed technique and was tested over channels with different levels of loss and coupling. Measurement results show that the receiver can equalize channels with maximum 21dB loss while consuming about 7.5mW from a 1.2V supply. We also introduce a compact, low-power transmitter employing passive equalization. The efficacy of the proposed technique is demonstrated through implementation of a prototype in 65nm CMOS. The design achieves up to 20Gb/s data rate while consuming less than 10mW.

An alternative to electrical signaling is to employ optical signaling for chip-to-chip interconnections, which offers low channel loss and cross-talk while providing high communication bandwidth. In this work we demonstrate the possibility of building compact and low-power optical receivers. A novel RC front-end is proposed that combines dynamic offset modulation and double-sampling techniques to eliminate the need for a short time constant at the input of the receiver. Unlike conventional designs, this receiver does not require a high-gain stage that runs at the data rate, making it suitable for low-power implementations. In addition, it allows time-division multiplexing to support very high data rates. A prototype was implemented in 65nm CMOS and achieved up to 24Gb/s with less than 0.4pJ/b power efficiency per channel. As the proposed design mainly employs digital blocks, it benefits greatly from technology scaling in terms of power and area saving.

As the technology scales, the number of transistors on the chip grows. This necessitates a corresponding increase in the bandwidth of the on-chip wires. In this dissertation, we take a close look at wire scaling and investigate its effect on wire performance metrics. We explore a novel on-chip communication link based on a double-sampling architecture and dynamic offset modulation technique that enables low power consumption and high data rates while achieving high bandwidth density in 28nm CMOS technology. The functionality of the link is demonstrated using different length minimum-pitch on-chip wires. Measurement results show that the link achieves up to 20Gb/s of data rate (12.5Gb/s/$\mu$m) with better than 136fJ/b of power efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical microscopy is an essential tool in biological science and one of the gold standards for medical examinations. Miniaturization of microscopes can be a crucial stepping stone towards realizing compact, cost-effective and portable platforms for biomedical research and healthcare. This thesis reports on implementations of bright-field and fluorescence chip-scale microscopes for a variety of biological imaging applications. The term “chip-scale microscopy” refers to lensless imaging techniques realized in the form of mass-producible semiconductor devices, which transforms the fundamental design of optical microscopes.

Our strategy for chip-scale microscopy involves utilization of low-cost Complementary metal Oxide Semiconductor (CMOS) image sensors, computational image processing and micro-fabricated structural components. First, the sub-pixel resolving optofluidic microscope (SROFM), will be presented, which combines microfluidics and pixel super-resolution image reconstruction to perform high-throughput imaging of fluidic samples, such as blood cells. We discuss design parameters and construction of the device, as well as the resulting images and the resolution of the device, which was 0.66 µm at the highest acuity. The potential applications of SROFM for clinical diagnosis of malaria in the resource-limited settings is discussed.

Next, the implementations of ePetri, a self-imaging Petri dish platform with microscopy resolution, are presented. Here, we simply place the sample of interest on the surface of the image sensor and capture the direct shadow images under the illumination. By taking advantage of the inherent motion of the microorganisms, we achieve high resolution (~1 µm) imaging and long term culture of motile microorganisms over ultra large field-of-view (5.7 mm × 4.4 mm) in a specialized ePetri platform. We apply the pixel super-resolution reconstruction to a set of low-resolution shadow images of the microorganisms as they move across the sensing area of an image sensor chip and render an improved resolution image. We perform longitudinal study of Euglena gracilis cultured in an ePetri platform and image based analysis on the motion and morphology of the cells. The ePetri device for imaging non-motile cells are also demonstrated, by using the sweeping illumination of a light emitting diode (LED) matrix for pixel super-resolution reconstruction of sub-pixel shifted shadow images. Using this prototype device, we demonstrate the detection of waterborne parasites for the effective diagnosis of enteric parasite infection in resource-limited settings.

Then, we demonstrate the adaptation of a smartphone’s camera to function as a compact lensless microscope, which uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is also based on the image reconstruction with sweeping illumination technique, where the sequence of images are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. Image acquisition and reconstruction is performed on the device using a custom-built android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system.

Finally, we report on the implementation of fluorescence chip-scale microscope, based on a silo-filter structure fabricated on the pixel array of a CMOS image sensor. The extruded pixel design with metal walls between neighboring pixels successfully guides fluorescence emission through the thick absorptive filter to the photodiode layer of a pixel. Our silo-filter CMOS image sensor prototype achieves 13-µm resolution for fluorescence imaging over a wide field-of-view (4.8 mm × 4.4 mm). Here, we demonstrate bright-field and fluorescence longitudinal imaging of living cells in a compact, low-cost configuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kohn-Sham density functional theory (KSDFT) is currently the main work-horse of quantum mechanical calculations in physics, chemistry, and materials science. From a mechanical engineering perspective, we are interested in studying the role of defects in the mechanical properties in materials. In real materials, defects are typically found at very small concentrations e.g., vacancies occur at parts per million, dislocation density in metals ranges from $10^{10} m^{-2}$ to $10^{15} m^{-2}$, and grain sizes vary from nanometers to micrometers in polycrystalline materials, etc. In order to model materials at realistic defect concentrations using DFT, we would need to work with system sizes beyond millions of atoms. Due to the cubic-scaling computational cost with respect to the number of atoms in conventional DFT implementations, such system sizes are unreachable. Since the early 1990s, there has been a huge interest in developing DFT implementations that have linear-scaling computational cost. A promising approach to achieving linear-scaling cost is to approximate the density matrix in KSDFT. The focus of this thesis is to provide a firm mathematical framework to study the convergence of these approximations. We reformulate the Kohn-Sham density functional theory as a nested variational problem in the density matrix, the electrostatic potential, and a field dual to the electron density. The corresponding functional is linear in the density matrix and thus amenable to spectral representation. Based on this reformulation, we introduce a new approximation scheme, called spectral binning, which does not require smoothing of the occupancy function and thus applies at arbitrarily low temperatures. We proof convergence of the approximate solutions with respect to spectral binning and with respect to an additional spatial discretization of the domain. For a standard one-dimensional benchmark problem, we present numerical experiments for which spectral binning exhibits excellent convergence characteristics and outperforms other linear-scaling methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents a new class of solvers for the subsonic compressible Navier-Stokes equations in general two- and three-dimensional spatial domains. The proposed methodology incorporates: 1) A novel linear-cost implicit solver based on use of higher-order backward differentiation formulae (BDF) and the alternating direction implicit approach (ADI); 2) A fast explicit solver; 3) Dispersionless spectral spatial discretizations; and 4) A domain decomposition strategy that negotiates the interactions between the implicit and explicit domains. In particular, the implicit methodology is quasi-unconditionally stable (it does not suffer from CFL constraints for adequately resolved flows), and it can deliver orders of time accuracy between two and six in the presence of general boundary conditions. In fact this thesis presents, for the first time in the literature, high-order time-convergence curves for Navier-Stokes solvers based on the ADI strategy---previous ADI solvers for the Navier-Stokes equations have not demonstrated orders of temporal accuracy higher than one. An extended discussion is presented in this thesis which places on a solid theoretical basis the observed quasi-unconditional stability of the methods of orders two through six. The performance of the proposed solvers is favorable. For example, a two-dimensional rough-surface configuration including boundary layer effects at Reynolds number equal to one million and Mach number 0.85 (with a well-resolved boundary layer, run up to a sufficiently long time that single vortices travel the entire spatial extent of the domain, and with spatial mesh sizes near the wall of the order of one hundred-thousandth the length of the domain) was successfully tackled in a relatively short (approximately thirty-hour) single-core run; for such discretizations an explicit solver would require truly prohibitive computing times. As demonstrated via a variety of numerical experiments in two- and three-dimensions, further, the proposed multi-domain parallel implicit-explicit implementations exhibit high-order convergence in space and time, useful stability properties, limited dispersion, and high parallel efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been well-established that interfaces in crystalline materials are key players in the mechanics of a variety of mesoscopic processes such as solidification, recrystallization, grain boundary migration, and severe plastic deformation. In particular, interfaces with complex morphologies have been observed to play a crucial role in many micromechanical phenomena such as grain boundary migration, stability, and twinning. Interfaces are a unique type of material defect in that they demonstrate a breadth of behavior and characteristics eluding simplified descriptions. Indeed, modeling the complex and diverse behavior of interfaces is still an active area of research, and to the author's knowledge there are as yet no predictive models for the energy and morphology of interfaces with arbitrary character. The aim of this thesis is to develop a novel model for interface energy and morphology that i) provides accurate results (especially regarding "energy cusp" locations) for interfaces with arbitrary character, ii) depends on a small set of material parameters, and iii) is fast enough to incorporate into large scale simulations.

In the first half of the work, a model for planar, immiscible grain boundary is formulated. By building on the assumption that anisotropic grain boundary energetics are dominated by geometry and crystallography, a construction on lattice density functions (referred to as "covariance") is introduced that provides a geometric measure of the order of an interface. Covariance forms the basis for a fully general model of the energy of a planar interface, and it is demonstrated by comparison with a wide selection of molecular dynamics energy data for FCC and BCC tilt and twist boundaries that the model accurately reproduces the energy landscape using only three material parameters. It is observed that the planar constraint on the model is, in some cases, over-restrictive; this motivates an extension of the model.

In the second half of the work, the theory of faceting in interfaces is developed and applied to the planar interface model for grain boundaries. Building on previous work in mathematics and materials science, an algorithm is formulated that returns the minimal possible energy attainable by relaxation and the corresponding relaxed morphology for a given planar energy model. It is shown that the relaxation significantly improves the energy results of the planar covariance model for FCC and BCC tilt and twist boundaries. The ability of the model to accurately predict faceting patterns is demonstrated by comparison to molecular dynamics energy data and experimental morphological observation for asymmetric tilt grain boundaries. It is also demonstrated that by varying the temperature in the planar covariance model, it is possible to reproduce a priori the experimentally observed effects of temperature on facet formation.

Finally, the range and scope of the covariance and relaxation models, having been demonstrated by means of extensive MD and experimental comparison, future applications and implementations of the model are explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is an investigation into the nature of data analysis and computer software systems which support this activity.

The first chapter develops the notion of data analysis as an experimental science which has two major components: data-gathering and theory-building. The basic role of language in determining the meaningfulness of theory is stressed, and the informativeness of a language and data base pair is studied. The static and dynamic aspects of data analysis are then considered from this conceptual vantage point. The second chapter surveys the available types of computer systems which may be useful for data analysis. Particular attention is paid to the questions raised in the first chapter about the language restrictions imposed by the computer system and its dynamic properties.

The third chapter discusses the REL data analysis system, which was designed to satisfy the needs of the data analyzer in an operational relational data system. The major limitation on the use of such systems is the amount of access to data stored on a relatively slow secondary memory. This problem of the paging of data is investigated and two classes of data structure representations are found, each of which has desirable paging characteristics for certain types of queries. One representation is used by most of the generalized data base management systems in existence today, but the other is clearly preferred in the data analysis environment, as conceptualized in Chapter I.

This data representation has strong implications for a fundamental process of data analysis -- the quantification of variables. Since quantification is one of the few means of summarizing and abstracting, data analysis systems are under strong pressure to facilitate the process. Two implementations of quantification are studied: one analagous to the form of the lower predicate calculus and another more closely attuned to the data representation. A comparison of these indicates that the use of the "label class" method results in orders of magnitude improvement over the lower predicate calculus technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural design is a decision-making process in which a wide spectrum of requirements, expectations, and concerns needs to be properly addressed. Engineering design criteria are considered together with societal and client preferences, and most of these design objectives are affected by the uncertainties surrounding a design. Therefore, realistic design frameworks must be able to handle multiple performance objectives and incorporate uncertainties from numerous sources into the process.

In this study, a multi-criteria based design framework for structural design under seismic risk is explored. The emphasis is on reliability-based performance objectives and their interaction with economic objectives. The framework has analysis, evaluation, and revision stages. In the probabilistic response analysis, seismic loading uncertainties as well as modeling uncertainties are incorporated. For evaluation, two approaches are suggested: one based on preference aggregation and the other based on socio-economics. Both implementations of the general framework are illustrated with simple but informative design examples to explore the basic features of the framework.

The first approach uses concepts similar to those found in multi-criteria decision theory, and directly combines reliability-based objectives with others. This approach is implemented in a single-stage design procedure. In the socio-economics based approach, a two-stage design procedure is recommended in which societal preferences are treated through reliability-based engineering performance measures, but emphasis is also given to economic objectives because these are especially important to the structural designer's client. A rational net asset value formulation including losses from uncertain future earthquakes is used to assess the economic performance of a design. A recently developed assembly-based vulnerability analysis is incorporated into the loss estimation.

The presented performance-based design framework allows investigation of various design issues and their impact on a structural design. It is a flexible one that readily allows incorporation of new methods and concepts in seismic hazard specification, structural analysis, and loss estimation.