40 resultados para holographic photopolmer
Resumo:
In this work we demonstrate the use of holographic lithography for generation of large area plasmonic periodic structures. Submicrometric array of holes, with different periods and thickness, were recorded in gold films, in areas of about 1 cm2, with homogeneity similar to that of samples recorded by Focused Ion Beam. In order to check the plasmonic properties, we measured the transmission spectra of the samples. The spectra exhibit the typical surface plasmon resonances (SPR) in the infrared whose position and width present the expected behavior with the period of the array and film thickness. The shift of the peak position with the permittivity of the surrounding medium demonstrates the feasebility of the sample as large area sensors. © 2009 SPIE.
Resumo:
In this work we studied the changes of the optical constants of films in the binary system Sb2O3-Sb2S3 induced by light in the VIS-UV. The measurements were performed before and after homogeneous irradiation of the films to a Hg lamp and in real time during the holographic exposure of the samples (at 458nm). Changes of the absorption coefficient (amplitude grating) and refractive index (phase grating) were measured simultaneously using the self-diffraction using the holographic setup. Besides the films presented a strong photodarkening effect under homogeneous irradiation, the samples holographically exposed presented only refractive index modulations. None amplitude modulation was measured in real time for spatial frequencies of about 1000 l/mm. © 2009 SPIE.
Resumo:
We report investigations on running holograms recorded in an azopolymer film made of a poly(methyl methacrylate) matrix doped with Disperse Red 1. Two-wave mixing experiments were carried out in the symmetrical transmission geometry. A stabilization technique was employed for active control of the phase shift between the real-time hologram and the interference pattern. Depending on the imposed phase shift, a running hologram propagates in the material in the form of an isomerization wave created by a continuous erasing-rewriting process. Diffraction efficiencies and the hologram velocities were measured as functions of the holographic phase shift at the wavelengths 515 and 488 nm. The experimental results were compared to theoretical curves obtained from a simplified model of the isomerization kinetics. The selective contributions of the phase and the amplitude gratings to the whole hologram were also determined. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The influence of both thermal treatment and laser irradiation on the structural and optical properties of films in the Sb 2 O 3 –Sb 2 S 3 system was investigated. The films were prepared by RF-sputtering using glass compositions as raw materials. Irreversible photodarkening effect was observed after exposure the films to a 458nm solid state laser. It is shown, for the first time, the use of holographic technique to measure “in situ”, simultaneously and independently, the phase and amplitude modulations in glassy films. The films were also photo-crystallized and analysed “in situ” using a laser coupled to a micro-Raman equipment. Results showed that Sb 2 S 3 crystalline phase was obtained after irradiation. The effect of thermal annealing on the structure of the films was carried out. Different from the result obtained by irradiation, thermal annealing induces the crystallization of the Sb 2 O 3 phase. Photo and thermal induced effects on films were studied using UV–Vis and Raman spectroscopy, atomic force microscopy (AFM), thermal analysis (DSC), X-ray diffraction, scanning electron microscopy (MEV) and energy-dispersive X-ray spectroscopy (EDX).
Resumo:
Refractive and profilometric measurements of lenses were performed through holography with a photorefractive Bi12TiO20 crystal as the recording medium. Two properly aligned diode lasers emitting in the red region were employed as light sources. Both lasers were tuned in order to provide millimetric and sub-millimetric synthetic wavelengths. The surfaces of the test lens were covered by a 25-μm opaque plastic tape in order to allow the lens profilometry upon illuminating them with a collimated beam. The resulting holographic images appear covered by interference fringes corresponding to the wavefront geometry of the wave scattered by the lens. For refractive index measurement a diffusely scattering flat surface was positioned behind the uncovered lens which was also illuminated by a plane wave. The resulting contour interferogram describes the form of the wavefront after the beam traveled back and forth through the lens. The fringe quantitative evaluation was carried out through the four-stepping technique and the resulting phase map and the Branch-cut method was employed for phase unwrapping. The only non-optical procedure for lens characterization was the thickness measurement, made by a dial caliper. Exact ray tracing calculation was performed in order to establish a relation between the output wavefront geometry and the lens parameters like radii of curvature, thickness and refractive index. By quantitatively comparing the theoretical wavefront geometry with the experimental results relative uncertainties bellow 3% for refractive index and 1 % for focal length were obtained. © 2008 American Institute of Physics.
Resumo:
A novel optical setup for imaging through reflection holography with Bi12TiO20 (BTO) sillenite photorefractive crystals is proposed. Aiming a compact, robust and simple optical setup the lensless Denisiuk arrangement was chosen, using a He-Ne red laser as light source. In this setup the holographic medium is placed between the light source and the object. The beam impinging the crystal front face is the reference one, while the light scattered by the surface is the object beam in a holographic recording by diffusion. In order to allow the readout of the diffracted wave only and to keep the setup simplicity a polarizing beam splitter cube (PBS) was positioned at the BTO input. The reference beam is s-polarized (polarization direction perpendicular to the table top) and the crystal. 〈001〉-axis is rotated by an angle γ with respect to the input polarization in order to make the transmitted object beam and the diffracted beam to have orthogonal polarizations. While the transmitted wave is reflected by the PBS at a right angle, the diffracted wave carrying the holographic reconstruction of the object passes through the PBS, being collected by a positive lens in order to form the holographic image at a CCD camera. The holographic recording with the grating vector is parallel to the 〈100〉-axis. An expression for the diffracted wave intensity as a function of γ was derived, and this relation was experimentally investigated. © 2008 American Institute of Physics.
Resumo:
Pós-graduação em Física - IFT