80 resultados para gypsum plasterboard
Resumo:
Aim: The aim of the study was to assess the accuracy of a new intraoral paralleling device for creating proximal guiding planes for removable partial dental prostheses. Methods and Materials: Thirty gypsum casts were divided into two groups in which the proximal surfaces of selected teeth were prepared using either a surveying device (Group 1) or the new ParalAB paralleling device (Group 2). In each cast guiding planes were prepared on the distal surface of the maxillary left canine (A), on the mesial and distal surfaces of the maxillary left second molar (B and C), and on the distal surface of the maxillary right canine (D). Each prepared surface formed an angle related to the occlusal plane that was measured five times and averaged by one operator using a tridimensional coordinate machine. Results: The mean guiding plane angles (± standard deviation) for the prepared surfaces were A=91.82° (±0.48°, B=90.47° (±0.47°, C=90.21° (±0.76°, and D=90.50° (±0.73°) for the dental surveyor (Group 1) and A=92.18° (±0.87°), B=90.90° (±0.85°), C=90.07° (±0.92°), and D=90.66° (±0.76°) for the ParalAB paralleling device (Group 2). A two-way ANOVA, Tukey's, and Levène's tests (at p<0.05) revealed statistically significant differences among surfaces prepared by both groups and that one surface Conclusions: The ParalAB device was able to prepare parallel surfaces and despite significant difference between groups, the ParalAB presented a small deviation from absolute parallelism and can be considered a valid method to transfer guide plans in the fabrication of removable partial dentures. Clinical Significance: The preparation of suitable guiding planes on abutment teeth during the fabrication of removable partial dentures is dependent on the ability of the operator and requires considerable chair time. When multiple teeth are involved, achieving parallelism between abutment surfaces can be technically challenging, especially in posterior regions of the mouth. The ParalAB prototype intraoral paralleling device can aid the clinician during the preparation of accurate guiding planes with a minimum degree of occlusal divergence. © 2010 Seer Publishing LLC.
Resumo:
Oxidative dissolution of chalcopyrite at ambient temperatures is generally slow and subject to passivation, posing a major challenge for developing bioleaching applications for this recalcitrant mineral. Chloride is known to enhance the chemical leaching of chalcopyrite, but much of this effect has been demonstrated at elevated temperatures. This study was undertaken to test whether 100-200 mM Na-chloride enhances the chemical and bacterial leaching of chalcopyrite in shake flasks and stirred tank bioreactor conditions at mesophilic temperatures. Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and abiotic controls were employed for the leaching experiments. Addition of Na-chloride to the bioleaching suspension inhibited the formation of secondary phases from chalcopyrite and decreased the Fe(III) precipitation. Neither elemental S nor secondary Cu-sulfides were detected in solid residues by X-ray diffraction. Chalcopyrite leaching was enhanced when the solution contained bacteria, ferrous iron and Na-chloride under low redox potential (< 450 mV) conditions. Scanning electron micrographs and energy-dispersive analysis of X-rays revealed the presence of precipitates that were identified as brushite and jarosites in solid residues. Minor amounts of gypsum may also have been present. Electrochemical analysis of solid residues was in concurrence of the differential effects between chemical controls, chloride ions, and bacteria. Electrochemical impedance spectroscopy was used to characterize interfacial changes on chalcopyrite surface caused by different bioleaching conditions. In abiotic controls, the impedance signal stabilized after 28 days, indicating the lack of changes on mineral surface thereafter, but with more resistive behavior than chalcopyrite itself. For bioleached samples, the signal suggested some capacitive response with time owing to the formation of less conductive precipitates. At Bode-phase angle plots (middle frequency), a new time constant was observed that was associated with the formation of jarosite, possibly also with minor amount or elemental S, although this intermediate could not be verified by XRD. Real impedance vs. frequency plots indicated that the bioleaching continued to modify the chalcopyrite/solution interface even after 42 days. © 2013 The Authors.
Resumo:
Correspondence Analysis was adopted as tool for investigating the statistical structure of hydrochemical and weathering datasets of groundwater samples, with the main purpose of identifying impacts on mineral weathering caused by anthropogenic activities, namely fertilizing of farmlands. The hydrochemical dataset comprised measured concentrations of major inorganic compounds dissolved in groundwater, namely bicarbonate, silica (usually by-products of chemical weathering), chloride, sulphate and nitrate (typically atmospheric plus anthropogenic inputs). The weathering dataset consisted of calculated mass transfers of minerals being dissolved in loess sediments of a region located in SW Hungary (Szigetvár area), namely Na-plagioclase, calcite and dolomite, and of pollution-related concentrations of sodium, magnesium and calcium. A first run of Correspondence Analysis described groundwater composition in the study area as a system of triple influence, where spots of domestic effluents-dominated chemistries are surrounded by areas with agriculture-dominated chemistries, both imprinted over large regions of weathering dominated chemistries. A second run revealed that nitrification of N-fertilizers is promoting mineral weathering by the nitric acid reaction (anthropogenic pathway), in concurrence with the retreating of weathering by carbonic acid (natural pathway). It also indicated that dolomite and calcite are being players in a dedolomitization process driven by dissolution of gypsum fertilizers and nitrification of N-fertilizers. © 2013 Elsevier Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Reabilitação Oral - FOAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)