102 resultados para field theories
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Constrained systems in quantum field theories call for a careful study of diverse classes of constraints and consistency checks over their temporal evolution. Here we study the functional structure of the free electromagnetic and pure Yang-Mills fields on the front-form coordinates with the null-plane gauge condition. It is seen that in this framework, we can deal with strictu sensu physical fields.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The use of light front coordinates in quantum field theories (QFT) always brought some problems and controversies. In this work we explore some aspects of its formalism with respect to the employment of dimensional regularization in the computation of the photon's self-energy at the one-loop level and how the fermion propagator has an important role in the outcoming results.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Lagrangian formalism for the N = 2 supersymmetric sinh-Gordon model with a jump defect is considered. The modified conserved momentum and energy are constructed in terms of border functions. The supersymmetric Backlund transformation is given and an one-soliton solution is obtained.The Lax formulation based on the affine super Lie algebra sl(2, 2) within the space split by the defect leads to the integrability of the model and henceforth to the existence of an infinite number of constants of motion.
Resumo:
We construct static and time-dependent exact soliton solutions with nontrivial Hopf topological charge for a field theory in 3 + 1 dimensions with the target space being the two dimensional sphere S(2). The model considered is a reduction of the so-called extended Skyrme-Faddeev theory by the removal of the quadratic term in derivatives of the fields. The solutions are constructed using an ansatz based on the conformal and target space symmetries. The solutions are said self-dual because they solve first order differential equations which together with some conditions on the coupling constants, imply the second order equations of motion. The solutions belong to a sub-sector of the theory with an infinite number of local conserved currents. The equation for the profile function of the ansatz corresponds to the Bogomolny equation for the sine-Gordon model.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper we discuss the Lax formulation of the Grassmannian and Bosonic Thirring models in the presence of jump defects. For the Grassmannian case, the defect is described by Backlund transformation which is responsible for preserving the integrability of the model. We then propose an extension of the Backlund transformation for the Bosonic Thirring model which is verified by some Backlund transitions like vacuum-one soliton, one soliton-one soliton, one soliton-two solitons and two solitons-two solitons. The Lax formulation within the space split by the defect leads to the integrability of Bosonic Thirring model with jump defects.
Resumo:
The structure of integrable field theories in the presence of jump defects is discussed in terms of boundary functions under the Lagrangian formalism. Explicit examples of bosonic and fermionic theories are considered. In particular, the boundary functions for the N = 1 and N = 2 super sinh-Gordon models are constructed and shown to generate the Backlund transformations for its soliton solutions. As a new and interesting example, a solution with an incoming boson and an outgoing fermion for the N = 1 case is presented. The resulting integrable models are shown to be invariant under supersymmetric transformation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)