47 resultados para exact solutions
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Física - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work is a review of the Negative Dimension Integration Method as a powerful tool for the computation of the radiative corrections present in Quantum Field Perturbation Theory. This method is applicable in the context of Dimensional Regularization and it provides exact solutions for Feynman integrals with both dimensional parameter and propagator exponents generalized. These solutions are presentedintheformoflinearcombinationsofhypergeometricfunctionswhosedomains of convergence are related to the analytic structure of the Feynman Integral. Each solution is connected to the others trough analytic continuations. Besides presenting and discussing the general algorithm of the method in a detailed way, we offer concrete applications to scalar one-loop and two-loop integrals as well as to the one-loop renormalizationofQuantumElectrodynamics (QED)
Resumo:
Exact bounded solutions for a fermion subject to exponential scalar potential in 1 + 1 dimensions are found in closed form. We discuss the existence of zero modes which are related to the ultrarelativistic limit of the Dirac equation and are responsible for the induction of a fractional fermion number on the vacuum.
Resumo:
The problem of a fermion subject to a general scalar potential in a two-dimensional world for nonzero eigenenergies is mapped into a Sturm-Liouville problem for the upper component of the Dirac spinor. In the specific circumstance of an exponential potential, we have an effective Morse potential which reveals itself as an essentially relativistic problem. Exact bound solutions are found in closed form for this problem. The behaviour of the upper and lower components of the Dirac spinor is discussed in detail, particularly the existence of zero modes. (c) 2005 Elsevier B.v. All rights reserved.
Resumo:
In this paper, we explicitly construct an infinite number of Hopfions (static, soliton solutions with nonzero Hopf topological charges) within the recently proposed (3 + 1)-dimensional, integrable, and relativistically invariant field theory. Two integers label the family of Hopfions we have found. Their product is equal to the Hopf charge which provides a lower bound to the soliton's finite energy. The Hopfions are explicitly constructed in terms of the toroidal coordinates and shown to have a form of linked closed vortices.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We use ideas on integrability in higher dimensions to define Lorentz invariant field theories with an infinite number of local conserved currents. The models considered have a two-dimensional target space. Requiring the existence of lagrangean and the stability of static solutions singles out a class of models which have an additional conformal symmetry. That is used to explain the existence of an ansatz leading to solutions with non-trivial Hopf charges. © SISSA/ISAS 2002.
Resumo:
We present the exact construction of Riemannian (or stringy) instantons, which are classical solutions of 2D Yang-Mills theories that interpolate between initial and final string configurations. They satisfy the Hitchin equations with special boundary conditions. For the case of U(2) gauge group those equations can be written as the sinh-Gordon equation with a delta-function source. Using the techniques of integrable theories based on the zero curvature conditions, we show that the solution is a condensate of an infinite number of one-solitons with the same topological charge and with all possible rapidities.
Resumo:
The problem of a fermion subject to a general scalar potential in a two-dimensional world is mapped into a Sturm-Liouville problem for nonzero eigenenergies. The searching for possible bounded solutions is done in the circumstance of power-law potentials. The normalizable zero-eigenmode solutions are also searched. For the specific case of an inversely linear potential, which gives rise to an effective Kratzer potential, exact bounded solutions are found in closed form. The behaviour of the upper and lower components of the Dirac spinor is discussed in detail and some unusual results are revealed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The problem of a fermion subject to a general mixing of vector and scalar potentials in a two-dimensional world is mapped into a Sturm-Liouville problem. Isolated bounded solutions are also searched. For the specific case of an inversely linear potential, which gives rise to an effective Kratzer potential in the Sturm-Liouville problem, exact bounded solutions are found in closed form. The case of a pure scalar potential with their isolated zero-energy solutions, already analyzed in a previous work, is obtained as a particular case. The behavior of the upper and lower components of the Dirac spinor is discussed in detail and some unusual results are revealed. The nonrelativistic limit of our results adds a new support to the conclusion that even-parity solutions to the nonrelativistic one-dimensional hydrogen atom do not exist. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The intrinsically relativistic problem of a fermion subject to a pseudoscalar screened Coulomb plus a uniform background potential in two-dimensional space-time is mapped into a Sturm-Liouville. This mapping gives rise to an effective Morse-like potential and exact bounded solutions are found. It is shown that the uniform background potential determinates the number of bound-state solutions. The behaviour of the eigenenergies as well as of the upper and lower components of the Dirac spinor corresponding to bounded solutions is discussed in detail and some unusual results are revealed. An apparent paradox concerning the uncertainty principle is solved by recurring to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We study the problem of the evolution of the free surface of a fluid in a saturated porous medium, bounded from below by a. at impermeable bottom, and described by the Laplace equation with moving-boundary conditions. By making use of a convenient conformal transformation, we show that the solution to this problem is equivalent to the solution of the Laplace equation on a fixed domain, with new variable coefficients, the boundary conditions. We use a kernel of the Laplace equation which allows us to write the Dirichlet-to-Neumann operator, and in this way we are able to find an exact differential-integral equation for the evolution of the free surface in one space dimension. Although not amenable to direct analytical solutions, this equation turns out to allow an easy numerical implementation. We give an explicit illustrative case at the end of the article.
Resumo:
We introduce a Skyrme type, four-dimensional Euclidean field theory made of a triplet of scalar fields n→, taking values on the sphere S2, and an additional real scalar field φ, which is dynamical only on a three-dimensional surface embedded in R4. Using a special ansatz we reduce the 4d non-linear equations of motion into linear ordinary differential equations, which lead to the construction of an infinite number of exact soliton solutions with vanishing Euclidean action. The theory possesses a mass scale which fixes the size of the solitons in way which differs from Derrick's scaling arguments. The model may be relevant to the study of the low energy limit of pure SU(2) Yang-Mills theory. © 2004 Elsevier B.V. All rights reserved.