137 resultados para discrete polynomial transform
Resumo:
The study of function approximation is motivated by the human limitation and inability to register and manipulate with exact precision the behavior variations of the physical nature of a phenomenon. These variations are referred to as signals or signal functions. Many real world problem can be formulated as function approximation problems and from the viewpoint of artificial neural networks these can be seen as the problem of searching for a mapping that establishes a relationship from an input space to an output space through a process of network learning. Several paradigms of artificial neural networks (ANN) exist. Here we will be investigated a comparative of the ANN study of RBF with radial Polynomial Power of Sigmoids (PPS) in function approximation problems. Radial PPS are functions generated by linear combination of powers of sigmoids functions. The main objective of this paper is to show the advantages of the use of the radial PPS functions in relationship traditional RBF, through adaptive training and ridge regression techniques.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Wavelet functions have been used as the activation function in feedforward neural networks. An abundance of R&D has been produced on wavelet neural network area. Some successful algorithms and applications in wavelet neural network have been developed and reported in the literature. However, most of the aforementioned reports impose many restrictions in the classical backpropagation algorithm, such as low dimensionality, tensor product of wavelets, parameters initialization, and, in general, the output is one dimensional, etc. In order to remove some of these restrictions, a family of polynomial wavelets generated from powers of sigmoid functions is presented. We described how a multidimensional wavelet neural networks based on these functions can be constructed, trained and applied in pattern recognition tasks. As an example of application for the method proposed, it is studied the exclusive-or (XOR) problem.
Resumo:
In this paper, we described how a multidimensional wavelet neural networks based on Polynomial Powers of Sigmoid (PPS) can be constructed, trained and applied in image processing tasks. In this sense, a novel and uniform framework for face verification is presented. The framework is based on a family of PPS wavelets,generated from linear combination of the sigmoid functions, and can be considered appearance based in that features are extracted from the face image. The feature vectors are then subjected to subspace projection of PPS-wavelet. The design of PPS-wavelet neural networks is also discussed, which is seldom reported in the literature. The Stirling Universitys face database were used to generate the results. Our method has achieved 92 % of correct detection and 5 % of false detection rate on the database.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A computer-based sliding mode control (SMC) is analysed. The control law is accomplished using a computer and A/D and D/A converters. Two SMC designs are presented. The first one is a continuous-time conventional SMC design, with a variable structure law, which does not take into consideration the sampling period. The second one is a discrete-time SMC design, with a smooth sliding law, which does not have a structure variable and takes into consideration the sampling period. Both techniques are applied to control an inverted pendulum system. The performance of both the continuous-time and discrete-time controllers are compared. Simulations and experimental results are shown and the effectiveness of the proposed techniques is analysed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We have investigated a high-resolution Fourier transform (FT) absorption spectrum of the (CH3OH)-C-13 isotopomer of methanol from 400 to 950 cm(-1) with the Ritz program. We present the assignments of 7160 transitions, 3021 of which belong to Asymmetry, and 4139 to E-symmetry. These transitions occur between states labeled by K quantum numbers up to 14, and by torsional quantum numbers n up to 4. The Ritz program evaluated the energies of the 4684 involved levels with an accuracy of the order of 10(-4) cm(-1). All of the assigned lines correspond to transitions involving torsionally excited levels within the ground small-amplitude vibrational state. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Ties among event times are often recorded in survival studies. For example, in a two week laboratory study where event times are measured in days, ties are very likely to occur. The proportional hazards model might be used in this setting using an approximated partial likelihood function. This approximation works well when the number of ties is small. on the other hand, discrete regression models are suggested when the data are heavily tied. However, in many situations it is not clear which approach should be used in practice. In this work, empirical guidelines based on Monte Carlo simulations are provided. These recommendations are based on a measure of the amount of tied data present and the mean square error. An example illustrates the proposed criterion.
Resumo:
It is often necessary to run response surface designs in blocks. In this paper the analysis of data from such experiments, using polynomial regression models, is discussed. The definition and estimation of pure error in blocked designs are considered. It is recommended that pure error is estimated by assuming additive block and treatment effects, as this is more consistent with designs without blocking. The recovery of inter-block information using REML analysis is discussed, although it is shown that it has very little impact if thc design is nearly orthogonally blocked. Finally prediction from blocked designs is considered and it is shown that prediction of many quantities of interest is much simpler than prediction of the response itself.
Resumo:
Let 0
Resumo:
It is well known and easy to see that the zeros of both the associated polynomial and the derivative of an orthogonal polynomial p(n)(x) interlace with the zeros of p(n)(x) itself. The natural question of how these zeros interlace is under discussion. We give a sufficient condition for the mutual location of kth, 1 less than or equal to k less than or equal to n - 1, zeros of the associated polynomial and the derivative of an orthogonal polynomial in terms of inequalities for the corresponding Cotes numbers. Applications to the zeros of the associated polynomials and the derivatives of the classical orthogonal polynomials are provided. Various inequalities for zeros of higher order associated polynomials and higher order derivatives of orthogonal polynomials are proved. The results involve both classical and discrete orthogonal polynomials, where, in the discrete case, the differential operator is substituted by the difference operator. (C) 2001 IMACS. Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
Generalized Bessel polynomials (GBPs) are characterized as the extremal polynomials in certain inequalities in L-2 norm of Markov type. (C) 1998 Academic Press.
Resumo:
The study of robust design methodologies and techniques has become a new topical area in design optimizations in nearly all engineering and applied science disciplines in the last 10 years due to inevitable and unavoidable imprecision or uncertainty which is existed in real word design problems. To develop a fast optimizer for robust designs, a methodology based on polynomial chaos and tabu search algorithm is proposed. In the methodology, the polynomial chaos is employed as a stochastic response surface model of the objective function to efficiently evaluate the robust performance parameter while a mechanism to assign expected fitness only to promising solutions is introduced in tabu search algorithm to minimize the requirement for determining robust metrics of intermediate solutions. The proposed methodology is applied to the robust design of a practical inverse problem with satisfactory results.
Resumo:
Computer systems are used to support breast cancer diagnosis, with decisions taken from measurements carried out in regions of interest (ROIs). We show that support decisions obtained from square or rectangular ROIs can to include background regions with different behavior of healthy or diseased tissues. In this study, the background regions were identified as Partial Pixels (PP), obtained with a multilevel method of segmentation based on maximum entropy. The behaviors of healthy, diseased and partial tissues were quantified by fractal dimension and multiscale lacunarity, calculated through signatures of textures. The separability of groups was achieved using a polynomial classifier. The polynomials have powerful approximation properties as classifiers to treat characteristics linearly separable or not. This proposed method allowed quantifying the ROIs investigated and demonstrated that different behaviors are obtained, with distinctions of 90% for images obtained in the Cranio-caudal (CC) and Mediolateral Oblique (MLO) views.