93 resultados para degenerate diffusion
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In literature the phenomenon of diffusion has been widely studied, however for nonextensive systems which are governed by a nonlinear stochastic dynamic, there are a few soluble models. The purpose of this study is to present the solution of the nonlinear Fokker-Planck equation for a model of potential with barrier considering a term of absorption. Systems of this nature can be observed in various chemical or biological processes and their solution enriches the studies of existing nonextensive systems.
Resumo:
Sequences of the coat protein amino acids of definitive and tentative species of carlaviruses deposited in GenBank were aligned and a region of seven amino acids (GLGVPTE) was found to be conserved. The corresponding nucleotides were aligned, allowing the design of a degenerate primer that together with an oligo dT anti-sense primer, was effective for the detection of three distinct carlavirus species, two transmitted by aphids and one by whitefly. These primers have the advantage that about 940 nt from the 3'-terminus, comprising part of the CP gene (about 60%), the 11 K gene, and the terminal untranslated region can be amplified for sequencing. The fact that this amino acid sequence is conserved in almost all of the sequenced carlaviruses, allows the prediction that this primer pair will be useful as a diagnostic tool for carlavirus species. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We show that diffusion can play an important role in protein-folding kinetics. We explicitly calculate the diffusion coefficient of protein folding in a lattice model. We found that diffusion typically is configuration- or reaction coordinate-dependent. The diffusion coefficient is found to be decreasing with respect to the progression of folding toward the native state, which is caused by the collapse to a compact state constraining the configurational space for exploration. The configuration- or position-dependent diffusion coefficient has a significant contribution to the kinetics in addition to the thermodynamic free-energy barrier. It effectively changes (increases in this case) the kinetic barrier height as well as the position of the corresponding transition state and therefore modifies the folding kinetic rates as well as the kinetic routes. The resulting folding time, by considering both kinetic diffusion and the thermodynamic folding free-energy profile, thus is slower than the estimation from the thermodynamic free-energy barrier with constant diffusion but is consistent with the results from kinetic simulations. The configuration- or coordinate-dependent diffusion is especially important with respect to fast folding, when there is a small or no free-energy barrier and kinetics is controlled by diffusion. Including the configurational dependence will challenge the transition state theory of protein folding. The classical transition state theory will have to be modified to be consistent. The more detailed folding mechanistic studies involving phi value analysis based on the classical transition state theory also will have to be modified quantitatively.
Resumo:
In this paper, we investigate the invariance and integrability properties of an integrable two-component reaction-diffusion equation. We perform Painleve analysis for both the reaction-diffusion equation modelled by a coupled nonlinear partial differential equations and its general similarity reduced ordinary differential equation and confirm its integrability. Further, we perform Lie symmetry analysis for this model. Interestingly our investigations reveals a rich variety of particular solutions, which have not been reported in the literature, for this model. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
We discuss in this paper equations describing processes involving non-linear and higher-order diffusion. We focus on a particular case (u(t) = 2 lambda (2)(uu(x))(x) + lambda (2)u(xxxx)), which is put into analogy with the KdV equation. A balance of nonlinearity and higher-order diffusion enables the existence of self-similar solutions, describing diffusive shocks. These shocks are continuous solutions with a discontinuous higher-order derivative at the shock front. We argue that they play a role analogous to the soliton solutions in the dispersive case. We also discuss several physical instances where such equations are relevant.
Resumo:
We use a time-dependent dynamical hydrodynamic model to study a collapse in a degenerate fermion-fermion mixture ( DFFM) of different atoms. Due to a strong Pauli-blocking repulsion among identical spin-polarized fermions at short distances, there cannot be a collapse for repulsive interspecies fermion fermion interaction. However, there can be a collapse for a sufficiently attractive interspecies fermion-fermion interaction in a DFFM of different atoms. Using a variational analysis and numerical solution of the hydrodynamic model, we study different aspects of collapse in such a DFFM initiated by a jump in the interspecies fermion-fermion interaction ( scattering length) to a large negative ( attractive) value using a Feshbach resonance. Suggestion for experiments of collapse in a DFFM of distinct atoms is made.
Resumo:
We consider a one-dimensional mean-field-hydrodynamic model of a two-component degenerate Fermi gas in an external trap, each component representing a spin state of the same atom. We demonstrate that the interconversion between them (linear coupling), imposed by a resonant electromagnetic wave, transforms the immiscible binary gas into a miscible state, if the coupling constant, kappa, exceeds a critical value, kappa(cr). The effect is predicted in a variational approximation, and confirmed by numerical solutions. Unlike the recently studied model of a binary Bose-Einsten condensate with the linear coupling, the components in the immiscible phase of the binary fermion mixture never fill two separated domains with a wall between them, but rather form antilocked (pi-phase-shifted) density waves. Another difference from the bosonic mixture is spontaneous breaking of symmetry between the two components in terms of the numbers of atoms in them, N(1) and N(2). The latter effect is characterized by the parameter nu equivalent to(N(1)-N(2))/(N(1)+N(2)) (only N(1)+N(2) is a conserved quantity), the onset of miscibility at kappa >=kappa(cr) meaning a transition to nu equivalent to 0. At kappa
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
After pointing out the difference between normal and anomalous diffusion, we consider a hadron resonance cascade (HRC) model simulation for particle emission at RHIC and point out that rescattering in an expanding hadron resonance gas leads to a heavy tail in the source distribution. The results are compared to recent PHENIX measurements of the tail of the particle emitting source in Au+Au collisions at RHIC. In this context, we show how can one distinguish experimentally the anomalous diffusion of hadrons from a second order QCD phase transition.
Resumo:
A non-twist Hamiltonian system perturbed by two waves with particular wave numbers can present Robust Tori, barriers created by the vanishing of the perturbing Hamiltonian at some defined positions. When Robust Tori exist, any trajectory in phase space passing close to them is blocked by emergent invariant curves that prevent the chaotic transport. We analyze the breaking up of the RT as well the transport dependence on the wave numbers and on the wave amplitudes. Moreover, we report the chaotic web formation in the phase space and how this pattern influences the transport.
Resumo:
The isothermal kinetics of Ag precipitation was studied in Cu-Al-Ag alloys with concentrations ranging from 2 to 8 wt.%Al and 2 to 12 wt.%Ag, using scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDX) and microhardness measurements. The results indicated a change in the precipitates growing mechanism from diffusion to interface controlled process, probably due to a change in the nature of the interface with the Ag and Al enrichment of the precipitates. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The evolution equation governing surface perturbations of a shallow fluid heated from below at the critical Rayleigh number for the onset of convective motion, and with boundary conditions leading to zero critical wave number, is obtained. A solution for negative or cooling perturbations is explicitly exhibited, which shows that the system presents sharp propagating fronts.
Resumo:
The apparent diffusion coefficients for sucrose, NaCl and water during osmotic dehydration of tomatoes in ternary solutions were determined. Long time experiments (up to 60 h) were carried out in order to determine equilibrium concentrations inside tomatoes, whereas short time experiments (up to 4 h) were performed to provide detailed information on kinetics of water loss and solids gain at the beginning of osmotic treatment. The mass transfer rates for water and solutes showed to be dependent of NaCl and sucrose concentrations in osmotic solution and simple regression models as functions of solutes concentration were determined for diffusion coefficients. Salt and sucrose diffusivities showed to be interdependent, with increasing NaCl concentration causing the enhancement of water loss, at the same time that higher sucrose contents hindered the excessive salt penetration. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The top faces of float glass samples were exposed to vapors resulting from the decomposition of KNO3 at 565 degrees C for up to 32 h. X-ray dispersive spectra (EDS) show that K+ ions migrate into the glass. The K+ concentration profile was obtained and its diffusion coefficient was calculated by the Boltzmann-Matano technique. The mean diffusion coefficient was approximately 10 X 10(-11) cm(2) s(-1). It was observed that the refractive index and the Vickers hardness decrease with the depth (after the removal of successive layers), and their profiles were thus obtained. These profiles enabled the calculation of the diffusion coefficient of K+ through the Boltzmann-Matano technique, with mean results ranging between 6 x 10(-11) and 30 x 10(-11) cm(2) s(-1). (c) 2006 Elsevier B.V. All rights reserved.