143 resultados para artificial neutral network
Resumo:
The use of mobile robots turns out to be interesting in activities where the action of human specialist is difficult or dangerous. Mobile robots are often used for the exploration in areas of difficult access, such as rescue operations and space missions, to avoid human experts exposition to risky situations. Mobile robots are also used in agriculture for planting tasks as well as for keeping the application of pesticides within minimal amounts to mitigate environmental pollution. In this paper we present the development of a system to control the navigation of an autonomous mobile robot through tracks in plantations. Track images are used to control robot direction by pre-processing them to extract image features. Such features are then submitted to a support vector machine and an artificial neural network in order to find out the most appropriate route. A comparison of the two approaches was performed to ascertain the one presenting the best outcome. The overall goal of the project to which this work is connected is to develop a real time robot control system to be embedded into a hardware platform. In this paper we report the software implementation of a support vector machine and of an artificial neural network, which so far presented respectively around 93% and 90% accuracy in predicting the appropriate route. (C) 2013 The Authors. Published by Elsevier B.V. Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cutting analysis is a important and crucial task task to detect and prevent problems during the petroleum well drilling process. Several studies have been developed for drilling inspection, but none of them takes care about analysing the generated cutting at the vibrating shale shakers. Here we proposed a system to analyse the cutting's concentration at the vibrating shale shakers, which can indicate problems during the petroleum well drilling process, such that the collapse of the well borehole walls. Cutting's images are acquired and sent to the data analysis module, which has as the main goal to extract features and to classify frames according to one of three previously classes of cutting's volume. A collection of supervised classifiers were applied in order to allow comparisons about their accuracy and efficiency. We used the Optimum-Path Forest (OPF), Artificial Neural Network using Multi layer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC) for this task. The first one outperformed all the remaining classifiers. Recall that we are also the first to introduce the OPF classifier in this field of knowledge. Very good results show the robustness of the proposed system, which can be also integrated with other commonly system (Mud-Logging) in order to improve the last one's efficiency.
Resumo:
Wavelet functions have been used as the activation function in feedforward neural networks. An abundance of R&D has been produced on wavelet neural network area. Some successful algorithms and applications in wavelet neural network have been developed and reported in the literature. However, most of the aforementioned reports impose many restrictions in the classical backpropagation algorithm, such as low dimensionality, tensor product of wavelets, parameters initialization, and, in general, the output is one dimensional, etc. In order to remove some of these restrictions, a family of polynomial wavelets generated from powers of sigmoid functions is presented. We described how a multidimensional wavelet neural networks based on these functions can be constructed, trained and applied in pattern recognition tasks. As an example of application for the method proposed, it is studied the exclusive-or (XOR) problem.
Resumo:
In this paper, we described how a multidimensional wavelet neural networks based on Polynomial Powers of Sigmoid (PPS) can be constructed, trained and applied in image processing tasks. In this sense, a novel and uniform framework for face verification is presented. The framework is based on a family of PPS wavelets,generated from linear combination of the sigmoid functions, and can be considered appearance based in that features are extracted from the face image. The feature vectors are then subjected to subspace projection of PPS-wavelet. The design of PPS-wavelet neural networks is also discussed, which is seldom reported in the literature. The Stirling Universitys face database were used to generate the results. Our method has achieved 92 % of correct detection and 5 % of false detection rate on the database.
Resumo:
The paper describes a novel neural model to electrical load forecasting in transformers. The network acts as identifier of structural features to forecast process. So that output parameters can be estimated and generalized from an input parameter set. The model was trained and assessed through load data extracted from a Brazilian Electric Utility taking into account time, current, tension, active power in the three phases of the system. The results obtained in the simulations show that the developed technique can be used as an alternative tool to become more appropriate for planning of electric power systems.
Resumo:
A novel approach for solving robust parameter estimation problems is presented for processes with unknown-but-bounded errors and uncertainties. An artificial neural network is developed to calculate a membership set for model parameters. Techniques of fuzzy logic control lead the network to its equilibrium points. Simulated examples are presented as an illustration of the proposed technique. The result represent a significant improvement over previously proposed methods. (C) 1999 IMACS/Elsevier B.V. B.V. All rights reserved.
Resumo:
This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically>30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, two sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with an experimental example, an investigation on a massive quarter scale model of a steel bridge section, in order to verify the performance of this proposed methodology.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJETIVO: Construir uma rede neural artificial para auxiliar os gestores de restaurantes universitários na previsão de refeições diárias. MÉTODOS: O estudo foi desenvolvido a partir do levantamento de oito variáveis que influenciam o número de refeições diárias servidas no restaurante universitário. Utiliza-se o algoritmo de treinamento Backpropagation. Os resultados por meio da rede são comparados com os da série estudada e com resultados da estimação por média aritmética simples. RESULTADOS: A rede proposta acompanha as inúmeras alterações que ocorrem no número de refeições diárias do restaurante universitário. em 73% dos dias analisados, o método das redes neurais artificiais apresenta uma taxa de acerto maior do que o método da média aritmética simples. CONCLUSÃO: A rede neural artificial mostrou-se mais adequada para a previsão do número de refeições do que a metodologia de média simples ou quando a decisão do número de refeições é feita de forma subjetiva, sem critérios científicos.
Resumo:
This work presents the design of a fuzzy controller with simplified architecture that use an artificial neural network working as the aggregation operator for several active fuzzy rules. The simplified architecture of the fuzzy controller is used to minimize the time processing used in the closed loop system operation, the basic procedures of fuzzification are simplified to maximum while all the inference procedures are computed in a private way. As consequence, this simplified architecture allows a fast and easy configuration of the simplified fuzzy controller. The structuring of the fuzzy rules that define the control actions is previously computed using an artificial neural network based on CMAC Cerebellar Model Articulation Controller. The operational limits are standardized and all the control actions are previously calculated and stored in memory. For applications, results and conclusions several configurations of this fuzzy controller are considered.
Resumo:
This work presents a new approach for rainfall measurements making use of weather radar data for real time application to the radar systems operated by institute of Meteorological Research (IPMET) - UNESP - Bauru - SP-Brazil. Several real time adjustment techniques has been presented being most of them based on surface rain-gauge network. However, some of these methods do not regard the effect of the integration area, time integration and distance rainfall-radar. In this paper, artificial neural networks have been applied for generate a radar reflectivity-rain relationships which regard all effects described above. To evaluate prediction procedure, cross validation was performed using data from IPMET weather Doppler radar and rain-gauge network under the radar umbrella. The preliminary results were acceptable for rainfalls prediction. The small errors observed result from the spatial density and the time resolution of the rain-gauges networks used to calibrate the radar.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)