81 resultados para Viscoelastic
Resumo:
Rheological properties of rehydrated prunes were obtained applying compression-relaxation tests by using a Texture Analyzer TAXT2i. A mathematical development was adopted to determine the stress and area, along the deformation. Experimental data of stress versus time was fitted by using three different rheological models: generalized Maxwell, Normand & Peleg and Maxwell. Results showed that generalized Maxwell model can be used to describe the viscoelastic behavior of the samples. The rheological parameters obtained indicated that prunes exhibited elastic behavior more pronounced at low moisture content and drying air temperature. At high moisture content and temperature the sample became a more viscous and less rigid.
Resumo:
The thermoreversible sol-gel transition is well-known in biological and organic polymeric systems but has not been reported for inorganic systems. In this paper we put in evidence a thermoreversible sol-gel transition for zirconyl chloride aqueous solutions modified by sulfuric acid in the ratio 3:1 Zr:SO4. The synthesis conditions are detailed and a variety of experimental techniques (turbidimetry, dynamic rheology, and EXAFS) have been employed for investigating the thermal reversibility and the chemical structure of this new material. Turbidimetric measurements performed for solutions containing different concentrations of precursor have evidenced that the sol-gel transformation temperature increases from 50 to 80 degrees C as the concentration of zirconyl chloride decreases from 0.22 to 0.018 mol L-1. A more detailed study has been done for the sample with [Zr] = 0.156 mol L-1, in which the sol-gel-sol transformation has been repeated several times by a cyclic variation of the temperature. The mechanical properties of this sample, evaluated by measuring the storage and the loss moduli, show a change from liquid like to viscoelastic to elastic behavior during the sol-gel transition and vice versa during the gel-sol one. In situ EXAFS measurements performed at the Zr K-edge show that no change of the local order around Zr occurs during the sol-gel-sol transition, in agreement with the concept of physical gel formation. We have proposed for the structure of the precursor an inner core made of hydroxyl and oxo groups bridging together zirconium atoms surrounded in surface by complexing sulfate ligands, the sulfate groups act as a protective layer, playing a key role in the linking propagation among primary particles during sol-gel-sol transition.
Resumo:
The viscoelastic properties of siloxane-poly(oxypropylene) (PPO) nanocomposites prepared by the sol-gel process has been analyzed during gelation by dynamic rheological measurements. The changes of storage and loss moduli, complex viscosity and phase angle has been measured as a function of time showing the newtonian viscosity of the sol in the initial step of gelation, and its progressive transformation to a viscoelastic gel. The rheologic properties have been correlated to mass fractal, nearly linear growth models and percolation theory. This study, completed by quasi-elastic light scattering and Si-29 solid state nuclear magnetic resonance measurements, shows that the mechanisms of gelation of siloxane-PPO hybrids depend on the molecular weight of the polymer and on the pH of the hybrid sol. For hybrids prepared in acid medium, a polymerization involving silicon reactive species located at the extremity of the polymer chains and presenting a functionality f = 2 occurs, forming a fractal structure during the first stage of sol-gel transition. For samples prepared under neutral pH, the fractal growth is only observed for hybrids containing short polymer chains (M-w similar to 130 gmol(-1)). The fractal dimensionality determined from the change in the rheological properties, indicates that the fractal growth mechanism changes from reaction-limited to diffusion-limited aggregation when the molecular weight of the PPO increases from 130 to 4000 gmol(-1) and as catalyst conditions change from acidic to neutral. Near the gel point, these hybrid gels have the typical scaling behavior expected from percolation theory. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The sols prepared by mixing a ZrOCl2 acidified solution to a hot H2SO4 aqueous solutions were studied in order to clarify the mechanism of thermoreversible sol-gel transition observed in this system. The viscoelastic properties of these suspensions were analyzed during the sol-gel transition by dynamic rheological measurements and quasi-elastic light scattering. The rheological properties were correlated to mass fractal and nearly linear growth models, and percolation theory. The results evidence that the thermoreversible sol-gel transition in this system is due to the formation of a network of physically linked aggregates having fractal structure. The decrease of the SO42- contents in the initial solution leads to the decrease of the fractal dimensionality from 2.3 to 1.8, indicating a change of the kinetic mechanism of aggregate growth. Near the gel point these samples have the typical scaling expected from percolation theory. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This work presents results concerning the preparation of redispersible tin oxide nanoparticles achieved by using Tiron molecule ((OH)(2)C(6)H(2) (SO(3)Na)(2)) as surface modifying agent. The adsorption isotherm measurements show that an amount of 10 wt.% of Tiron is need to recover the SnO(2) nanoparticles surface with a monolayer. These nanoparticles can be easily redispersed in tetramethyl ammonium hydroxide at pH greater than or equal to11 until a powder concentration of 12 vol.% of tin. Under these conditions, hydrodynamic particle size is about 7 nm and increases until 52 nm at pH 6 due to the aggregation phenomenon. The time evolution of the viscoelastic properties indicates that the suspensions at pH 12.5, containing 12 vol.% tin oxide and 10 wt.% of surface modifier are kinetically stable. After thermal treatment at different temperature the powder characterisation evidences that the presence of Tiron monolayer at the nanoparticles surface increases the thermal stability of the porous texture and prevent the micropore size growth. This set of results contributes to satisfy the demand for more controlled synthesis of nanoparticles with high thermal stability as required for fabrication of ultrafiltration ceramic membranes. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Carbon fiber reinforced polymer composites have been used in wide variety of applications including, aerospace, marine, sporting equipment as well as in the defense sector due to their outstanding properties at low density. In many of their applications, moisture absorption takes place which may result in a reduction in mechanical properties even at lower temperature service. In this work, the viscoelastic properties, such as storage modulus (E′) and loss modulus (E″), were obtained through vibration damping tests for three carbon fiber/epoxy composite families up to the saturation point (6 weeks). Three carbon fiber/epoxy composites having [0/0] s, [0/90] s, and [±45] s orientations were studied. During vibration tests the storage modulus (E′) and loss modulus (E″) were monitored as a function of moisture uptake, and it was observed that the natural frequencies and E′ values decreased with the increase during hygrothermal conditioning due to the matrix plasticization. © 2007 Wiley Periodicals, Inc.
Resumo:
A previous work showed that viscosity values measured high frequency by ultrasound agreed with the values at low frequency by the rotational viscometer when conditions are met, such as relatively low frequency viscosity. However, these conditions strongly reduce the range of the measurement cell. In order to obtain a measurement range and sensitivity high frequency must used, but it causes a frequency-dependent decrease on the viscosity values. This work introduces a new simple in order to represent this frequency-dependent behavior.model is based on the Maxwell model for viscoelastic , but using a variable parameter. This parameter has physical meaning because it represents the linear behavior the apparent elasticity measured along with the viscosity by .Automotive oils SAE 90 and SAE 250 at 22.5±0.5oC viscosities at low frequency of 0.6 and 6.7 Pa.s, respectively,tested in the range of 1-5 MHz. The model was used in to fit the obtained data using an algorithm of non-linear in Matlab. By including the viscosity at low frequency an unknown fitting parameter, it is possible to extrapolate its . Relative deviations between the values measured by the and extrapolated using the model for the SAE 90 and SAE 250 oils were 5.0% and 15.7%, respectively.©2008 IEEE.
Resumo:
The determination of the reflection coefficient of shear waves reflected from a solid-liquid interface is an important method in order to study the viscoelastic properties of liquids at high frequency. The reflection coefficient is a complex number. While the magnitude measurement is relatively easy and precise, the phase measurement is very difficult due to its strong temperature dependence. For that reason, most authors choose a simplified method in order to obtain the viscoelastic properties of liquids from the measured coefficient. In this simplified method, inconsistent viscosity results are obtained because pure viscous behavior is assumed and the phase is not measured. This work deals with an effort to improve the experimental technique required to measure both the magnitude and phase of the reflection coefficient and it intends to report realistic values for oils in a wide range of viscosity (0.092 - 6.7 Pa.s). Moreover, a device calibration process is investigated in order to monitor the dynamic viscosity of the liquid.
Resumo:
A low-Reynolds-number k-ω model for Newtonian fluids has been developed to predict drag reduction of viscoelastic fluids described by the FENE-P model. The model is an extension to viscoelastic fluids of the model for Newtonian fluids developed by Bredberg et al. (Int J Heat Fluid Flow 23:731-743, 2002). The performance of the model was assessed using results from direct numerical simulations for fully developed turbulent channel flow of FENE-P fluids. It should only be used for drag reductions of up to 50 % (low and intermediate drag reductions), because of the limiting assumption of turbulence isotropy leading to an under-prediction of k, but compares favourably with results from k-ε models in the literature based on turbulence isotropy. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
The purpose of this study is to develop a dynamic vibration absorber using viscoelastic material with nonlinear essential stiffness and time-dependent damping properties for a non-ideal vibrating system with Sommerfeld effect, resonance capture, and jump phenomenon. The absorber is a mass-bar subsystem that consists of a viscoelastic bar with memory attached to mass, in which the internal dissipative forces depend on current, deformations, and its operational frequency varies with limited temperature. The non-ideal vibrating system consists of a linear (nonlinear) oscillator (plane frame structure) under excitation, via spring connector, of a DC-motor with limited power supply. A viscoelastic dynamic absorber modeled with elastic stiffness essentially nonlinearities was developed to further reduce the Sommerfeld effect and the response of the structure. The numerical results show the performance of the absorber on the non-ideal system response through the resonance curves, time histories, and Poincarésections. Furthermore, the structure responses using the viscoelastic damper with and without memory were studied. © IMechE 2012.
Resumo:
In this paper we present a finite difference MAC-type approach for solving three-dimensional viscoelastic incompressible free surface flows governed by the eXtended Pom-Pom (XPP) model, considering a wide range of parameters. The numerical formulation presented in this work is an extension to three-dimensions of our implicit technique [Journal of Non-Newtonian Fluid Mechanics 166 (2011) 165-179] for solving two-dimensional viscoelastic free surface flows. To enhance the stability of the numerical method, we employ a combination of the projection method with an implicit technique for treating the pressure on the free surfaces. The differential constitutive equation of the fluid is solved using a second-order Runge-Kutta scheme. The numerical technique is validated by performing a mesh refinement study on a pipe flow, and the numerical results presented include the simulation of two complex viscoelastic free surface flows: extrudate-swell problem and jet buckling phenomenon. © 2013 Elsevier B.V.