79 resultados para Triple Consistency Principle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Weyl-Wigner prescription for quantization on Euclidean phase spaces makes essential use of Fourier duality. The extension of this property to more general phase spaces requires the use of Kac algebras, which provide the necessary background for the implementation of Fourier duality on general locally compact groups. Kac algebras - and the duality they incorporate - are consequently examined as candidates for a general quantization framework extending the usual formalism. Using as a test case the simplest nontrivial phase space, the half-plane, it is shown how the structures present in the complete-plane case must be modified. Traces, for example, must be replaced by their noncommutative generalizations - weights - and the correspondence embodied in the Weyl-Wigner formalism is no longer complete. Provided the underlying algebraic structure is suitably adapted to each case, Fourier duality is shown to be indeed a very powerful guide to the quantization of general physical systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study in a model independent way the role of a techniomega resonance in the process e+e-→ W+W-Z at the Next Linear Collider. © 1998 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The δ-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. Different ways of implementing the principle of minimal sensitivity to the δ-expansion produce in general different results for observables. For illustration we use the Nambu-Jona-Lasinio model for chiral symmetry restoration at finite density and compare results with those obtained with the Hartree-Fock approximation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive bounds on Higgs and gauge-boson anomalous interactions using the CDF data for the process pp̄ → γγγ + X. We use a linearly realized SU L(2) X U Y(1) invariant effective Lagrangian to describe the bosonic sector of the Standard Model, keeping the fermionic couplings unchanged. All dimension-six operators that lead to anomalous Higgs interactions involving γ and Z are considered. We also show the sensitivity that can be achieved for these couplings at Fermilab Tevatron upgrades. © 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We update the indirect bounds on anomalous triple gauge couplings coming from the non-universal one-loop contributions to the Z → bb width. These bounds, which are independent of the Higgs boson mass, are in agreement with the standard model predictions for the gauge boson self-couplings since the present value of R(b) agrees fairly well with the theoretical estimates. Moreover, these indirect constraints on Δg(Z)/1 and g(Z)/5 are most stringent than the present direct bounds on these quantities, while the indirect limit on λ(Z) is weaker than the available experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using pure spinors, the superstring was recently quantized in a manifestly ten-dimensional super-Poincaré covariant manner and a covariant prescription was given for tree-level scattering amplitudes. In this paper, we prove that this prescription is cyclically symmetric and, for the scattering of an arbitrary number of massless bosons and up to four massless fermions, it agrees with the standard Ramond-Neveu-Schwarz prescription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dairy cows often have to choose which of two sides to enter in the milking parlour. Some cows are very consistent in this choicė, and it is common to assume that when these cows are more disturbed are being milked in their non-preferred side. Such disturbance might involve significantly poor welfare. In order to assess this assumption, we decided to study the behaviour and milk yield of dairy cows and their relationships with side preference in the milking parlour. The study was carried out at Cambridge University Farm, in a two-sided tandem milking parlour. The data collection followed the daily management routine. We recorded the side chosen by each cow (left or right) during 40 milking sessions. Data from 70 cows, which were present in at least 25 milking sessions (mode = 36), were included in the statistical analysis. Cows' reactivity (CR) during premilking udder preparation, time spent fitting the milking cluster (FT), milk yield (MY) and duration of milking (DM) were measured. There was evident individual variation in the consistency of side choice. Individual differences (ANOVA, P < 0.001) were also found in CR, FT, MY and DM; although these variables were not significantly affected by the side or the interaction animal × side (ANOVA, P < 0.05). The comparison between left and right side means (paired t-test) of these variables did not show significant differences (P < 0.05). We concluded that there is no evidence that the cows were discomforted or stressed when milked in the non-preferred side of the milking parlour. © 2001 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a semi-automated method for extracting road segments from medium-resolution images based on active testing and edge analysis. The method is based on two sequential and independent stages. Firstly, an active testing method is used to extract an approximated road centreline which is based on a sequential and local exploitation of the image. Secondly, an iterative strategy based on edge analysis and the approximated centreline is used to measure precisely the road centreline. Based on the results obtained using medium-resolution test images, the method seems to be very promising. In general, the method proved to be very accurate whenever the roads are characterized by two well-defined anti-parallel edges and robust even in the presence of larger obstacles such as trees and shadows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a model for dynamical localization of topology using ideas from non-commutative geometry and topology in quantum mechanics. We consider a collection X of N one-dimensional manifolds and the corresponding set of boundary conditions (self-adjoint extensions) of the Dirac operator D. The set of boundary conditions encodes the topology and is parameterized by unitary matrices g. A particular geometry is described by a spectral triple x(g) = (A X, script H sign X, D(g)). We define a partition function for the sum over all g. In this model topology fluctuates but the dimension is kept fixed. We use the spectral principle to obtain an action for the set of boundary conditions. Together with invariance principles the procedure fixes the partition function for fluctuating topologies. The model has one free-parameter β and it is equivalent to a one plaquette gauge theory. We argue that topology becomes localized at β = ∞ for any value of N. Moreover, the system undergoes a third-order phase transition at β = 1 for large-N. We give a topological interpretation of the phase transition by looking how it affects the topology. © SISSA/ISAS 2004.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using arguments based on BRST cohomology, the pure spinor formalism for the superstring in an AdS 5×S 5 background is proven to be BRST invariant and conformally invariant at the quantum level to all orders in perturbation theory. Cohomology arguments are also used to prove the existence of an infinite set of non-local BRST-invariant charges at the quantum level. © SISSA 2005.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the light-cone gauge choice for Abelian and non-Abelian gauge fields, the vector boson propagator carries in it an additional spurious or unphysical pole intrinsic to the choice requiring a careful mathematical treatment. Research in this field over the years has shown us that mathematical consistency only is not enough to guarantee physically meaningful results. Whatever the prescription invoked to handle such an object, it has to preserve causality in the process. On the other hand, the covariantization technique is a well-suited one to tackle gauge-dependent poles in the Feynman integrals, dispensing the use of ad hoc prescriptions. In this work we show that the covariantization technique in the light-cone gauge is a direct consequence of the canonical quantization of the theory. © World Scientific Publishing Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A manifestly covariant treatment of the free quantum eletromagnetic field, in a linear covariant gauge, is implemented employing Schwinger's variational principle and the B-field formalism. It is also discussed the Abelian Proca model as an example of a system without constraints. © Società Italiana di Fisica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is commonly assumed that the equivalence principle can coexist without conflict with quantum mechanics. We shall argue here that, contrary to popular belief, this principle does not hold in quantum mechanics. We illustrate this point by computing the second-order correction for the scattering of a massive scalar boson by a weak gravitational field, treated as an external field. The resulting cross-section turns out to be mass-dependent. A way out of this dilemma would be, perhaps, to consider gravitation without the equivalence principle. At first sight, this seems to be a too much drastic attitude toward general relativity. Fortunately, the teleparallel version of general relativity - a description of the gravitational interaction by a force similar to the Lorentz force of electromagnetism and that, of course, dispenses with the equivalence principle - is equivalent to general relativity, thus providing a consistent theory for gravitation in the absence of the aforementioned principle. © World Scientific Publishing Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As far as external gravitational fields described by Newton's theory are concerned, theory shows that there is an unavoidable conflict between the universality of free fall (Galileo's equivalence principle) and quantum mechanics - a result confirmed by experiment. Is this conflict due perhaps to the use of Newton's gravity, instead of general relativity, in the analysis of the external gravitational field? The response is negative. To show this we compute the low corrections to the cross-section for the scattering of different quantum particles by an external gravitational field, treated as an external field, in the framework of Einstein's linearized gravity. To first order the cross-sections are spin-dependent; if the calculations are pushed to the next order they become dependent upon energy as well. Therefore, the Galileo's equivalence and, consequently, the classical equivalence principle, is violated in both cases. We address these issues here.