51 resultados para Transport network optimization
Resumo:
In this paper a method for solving the Short Term Transmission Network Expansion Planning (STTNEP) problem is presented. The STTNEP is a very complex mixed integer nonlinear programming problem that presents a combinatorial explosion in the search space. In this work we present a constructive heuristic algorithm to find a solution of the STTNEP of excellent quality. In each step of the algorithm a sensitivity index is used to add a circuit (transmission line or transformer) to the system. This sensitivity index is obtained solving the STTNEP problem considering as a continuous variable the number of circuits to be added (relaxed problem). The relaxed problem is a large and complex nonlinear programming and was solved through an interior points method that uses a combination of the multiple predictor corrector and multiple centrality corrections methods, both belonging to the family of higher order interior points method (HOIPM). Tests were carried out using a modified Carver system and the results presented show the good performance of both the constructive heuristic algorithm to solve the STTNEP problem and the HOIPM used in each step.
Resumo:
This study present a novel NO sensor made of a spin trap (iron(II)-diethyldithiocarbamate complex, FeDETC) incorporated in a latex rubber matrix and works as a trap for NO, which is detectable by Electron Paramagnetic Resonance (EPR). We explored the optimization of our sensors changing systematically two fabrication parameters: the latex rubber matrix temperature of polymerization and FeDETC concentration inside the matrix. The sensor was prepared in four different temperatures: 4, 10, 20 and 40°C. The FeDETC concentration was also varied from 0.975 to 14.8 mM. We observed a variation of the EPR signals from the sensors prepared at different conditions. We found a high stability of the EPR response from our sensor, 40 days at RT. The best sensor was made with a latex rubber matrix polymerized at 10°C and with a FeDETC concentration of 14.8 mM. In vivo tests show good biocompatibility of our sensor. © 2007 Asian Network for Scientific Information.
Resumo:
This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering uncertainty in demand and generation. The methodology used to solve the problem, finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with uncertainty. The model presented results in an optimization problem that is solved using a specialized genetic algorithm. The results obtained for known systems from the literature show that cheaper plans can be found satisfying the uncertainty in demand and generation. ©2008 IEEE.
Resumo:
An optimization technique to solve distribution network planning (DNP) problem is presented. This is a very complex mixed binary nonlinear programming problem. A constructive heuristic algorithm (CHA) aimed at obtaining an excellent quality solution for this problem is presented. In each step of the CHA, a sensitivity index is used to add a circuit or a substation to the distribution network. This sensitivity index is obtained solving the DNP problem considering the numbers of circuits and substations to be added as continuous variables (relaxed problem). The relaxed problem is a large and complex nonlinear programming and was solved through an efficient nonlinear optimization solver. A local improvement phase and a branching technique were implemented in the CHA. Results of two tests using a distribution network are presented in the paper in order to show the ability of the proposed algorithm. ©2009 IEEE.
Resumo:
In this paper, the short term transmission network expansion planning (STTNEP) is solved through a specialized genetic algorithm (SGA). A complete AC model of the transmission network is used, which permits the formulation of an integrated power system transmission network expansion planning problem (real and reactive power planning). The characteristics of the proposed SGA to solve the STTNEP problem are detailed and an interior point method is employed to solve nonlinear programming problems during the solution steps of the SGA. Results of tests carried out with two electrical energy systems show the capabilities of the SGA and also the viability of using the AC model to solve the STTNEP problem. © 2009 IEEE.
Resumo:
This paper presents a methodology to solve the transmission network expansion planning problem (TNEP) considering reliability and uncertainty in the demand. The proposed methodology provides an optimal expansion plan that allows the power system to operate adequately with an acceptable level of reliability and in an enviroment with uncertainness. The reliability criterion limits the expected value of the reliability index (LOLE - Loss Of Load Expectation) of the expanded system. The reliability is evaluated for the transmission system using an analytical technique based in enumeration. The mathematical model is solved, in a efficient way, using a specialized genetic algorithm of Chu-Beasley modified. Detailed results from an illustrative example are presented and discussed. © 2009 IEEE.
Resumo:
The problem of assigning cells to switches in a cellular mobile network is an NP-hard optimization problem. So, real size mobile networks could not be solved by using exact methods. The alternative is the use of the heuristic methods, because they allow us to find a good quality solution in a quite satisfactory computational time. This paper proposes a Beam Search method to solve the problem of assignment cell in cellular mobile networks. Some modifications in this algorithm are also presented, which allows its parallel application. Computational results obtained from several tests confirm the effectiveness of this approach to provide good solutions for medium- and large-sized cellular mobile network.
Resumo:
This paper presents the work in progress of an on-demand software deployment system based on application virtualization concepts which eliminates the need of software installation and configuration on each computer. Some mechanisms were created, such as mapping of utilization of resources by the application to improve the software distribution and startup; a virtualization middleware which give all resources needed for the software execution; an asynchronous P2P transport used to optimizing distribution on the network; and off-line support where the user can execute the application even when the server is not available or when is out of the network. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
This paper presents a Bi-level Programming (BP) approach to solve the Transmission Network Expansion Planning (TNEP) problem. The proposed model is envisaged under a market environment and considers security constraints. The upper-level of the BP problem corresponds to the transmission planner which procures the minimization of the total investment and load shedding cost. This upper-level problem is constrained by a single lower-level optimization problem which models a market clearing mechanism that includes security constraints. Results on the Garver's 6-bus and IEEE 24-bus RTS test systems are presented and discussed. Finally, some conclusions are drawn. © 2011 IEEE.
Resumo:
The development of new technologies that use peer-to-peer networks grows every day, with the object to supply the need of sharing information, resources and services of databases around the world. Among them are the peer-to-peer databases that take advantage of peer-to-peer networks to manage distributed knowledge bases, allowing the sharing of information semantically related but syntactically heterogeneous. However, it is a challenge to ensure the efficient search for information without compromising the autonomy of each node and network flexibility, given the structural characteristics of these networks. On the other hand, some studies propose the use of ontology semantics by assigning standardized categorization of information. The main original contribution of this work is the approach of this problem with a proposal for optimization of queries supported by the Ant Colony algorithm and classification though ontologies. The results show that this strategy enables the semantic support to the searches in peer-to-peer databases, aiming to expand the results without compromising network performance. © 2011 IEEE.
Resumo:
Wireless sensor network (WSN) Is a technology that can be used to monitor and actuate on environments in a non-intrusive way. The main difference from WSN and traditional sensor networks is the low dependability of WSN nodes. In this way, WSN solutions are based on a huge number of cheap tiny nodes that can present faults in hardware, software and wireless communication. The deployment of hundreds of nodes can overcome the low dependability of individual nodes, however this strategy introduces a lot of challenges regarding network management, real-time requirements and self-optimization. In this paper we present a simulated annealing approach that self-optimize large scale WSN. Simulation results indicate that our approach can achieve self-optimization characteristics in a dynamic WSN. © 2012 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS