67 resultados para Topological Spaces
Resumo:
The Cahill-Glauber approach for quantum mechanics on phase space is extended to the finite-dimensional case through the use of discrete coherent states. All properties and features of the continuous formalism are appropriately generalized. The continuum results are promptly recovered as a limiting case. The Jacobi theta functions are shown to have a prominent role in the context.
Resumo:
Topological charge screening in the QCD vacuum is found to provide crucial nonperturbative contributions to the short-distance expansion of the pseudoscalar (0-+) glueball correlator. The screening contributions enter the Wilson coefficients and are an indispensable complement to the direct instanton contributions. They restore consistency with the anomalous axial Ward identity and remedy several flaws in the 0-+ glueball sum rules caused by direct instantons in the absence of screening (lack of resonance signals, violation of the positivity bound and of the underlying low-energy theorem). The impact of the finite width of the instanton size distribution and the (gauge-invariant) renormalization of the instanton contributions are also discussed. New predictions for the 0-+ glueball mass and decay constant are presented.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Let alpha be a C(infinity) curve in a homogeneous space G/H. For each point x on the curve, we consider the subspace S(k)(alpha) of the Lie algebra G of G consisting of the vectors generating a one parameter subgroup whose orbit through x has contact of order k with alpha. In this paper, we give various important properties of the sequence of subspaces G superset of S(1)(alpha) superset of S(2)(alpha) superset of S(3)(alpha) superset of ... In particular, we give a stabilization property for certain well-behaved curves. We also describe its relationship to the isotropy subgroup with respect to the contact element of order k associated with alpha.
Resumo:
Suppose that u(t) is a solution of the three-dimensional Navier-Stokes equations, either on the whole space or with periodic boundary conditions, that has a singularity at time T. In this paper we show that the norm of u(T - t) in the homogeneous Sobolev space (H)over dot(s) must be bounded below by c(s)t(-(2s-1)/4) for 1/2 < s < 5/2 (s not equal 3/2), where c(s) is an absolute constant depending only on s; and by c(s)parallel to u(0)parallel to((5-2s)/5)(L2)t(-2s/5) for s > 5/2. (The result for 1/2 < s < 3/2 follows from well-known lower bounds on blowup in Lp spaces.) We show in particular that the local existence time in (H)over dot(s)(R-3) depends only on the (H)over dot(s)-norm for 1/2 < s < 5/2, s not equal 3/2. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4762841]
Resumo:
We show that the Hardy space H¹ anal (R2+ x R2+) can be identified with the class of functions f such that f and all its double and partial Hubert transforms Hk f belong to L¹ (R2). A basic tool used in the proof is the bisubharmonicity of |F|q, where F is a vector field that satisfies a generalized conjugate system of Cauchy-Riemann type.
Resumo:
Operator bases are discussed in connection with the construction of phase space representatives of operators in finite-dimensional spaces, and their properties are presented. It is also shown how these operator bases allow for the construction of a finite harmonic oscillator-like coherent state. Creation and annihilation operators for the Fock finite-dimensional space are discussed and their expressions in terms of the operator bases are explicitly written. The relevant finite-dimensional probability distributions are obtained and their limiting behavior for an infinite-dimensional space are calculated which agree with the well known results. (C) 1996 Academic Press, Inc.
Resumo:
The von Neumann-Liouville time evolution equation is represented in a discrete quantum phase space. The mapped Liouville operator and the corresponding Wigner function are explicitly written for the problem of a magnetic moment interacting with a magnetic field and the precessing solution is found. The propagator is also discussed and a time interval operator, associated to a unitary operator which shifts the energy levels in the Zeeman spectrum, is introduced. This operator is associated to the particular dynamical process and is not the continuous parameter describing the time evolution. The pair of unitary operators which shifts the time and energy is shown to obey the Weyl-Schwinger algebra. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
This paper deals with two aspects of relativistic cosmologies with closed spatial sections. These spacetimes are based on the theory of general relativity, and admit a foliation into space sections S(t), which are spacelike hypersurfaces satisfying the postulate of the closure of space: each S(t) is a three-dimensional closed Riemannian manifold. The topics discussed are: (i) a comparison, previously obtained, between Thurston geometries and Bianchi-Kantowski-Sachs metrics for such three-manifolds is here clarified and developed; and (ii) the implications of global inhomogeneity for locally homogeneous three-spaces of constant curvature are analyzed from an observational viewpoint.
Resumo:
We extend the Weyl-Wigner transformation to those particular degrees of freedom described by a finite number of states using a technique of constructing operator bases developed by Schwinger. Discrete transformation kernels are presented instead of continuous coordinate-momentum pair system and systems such as the one-dimensional canonical continuous coordinate-momentum pair system and the two-dimensional rotation system are described by special limits. Expressions are explicitly given for the spin one-half case. © 1988.
Resumo:
Using the flexibility and constructive definition of the Schwinger bases, we developed different mapping procedures to enhance different aspects of the dynamics and of the symmetries of an extended version of the two-level Lipkin model. The classical limits of the dynamics are discussed in connection with the different mappings. Discrete Wigner functions are also calculated. © 1995.
Resumo:
The problem of a harmonic oscillator coupling to an electromagnetic potential plus a topological-like (Chern-Simons) massive term, in two-dimensional space, is studied in the light of the symplectic formalism proposed by Faddeev and Jackiw for constrained systems.
Resumo:
In this paper we introduce the notion of G-pre-weighted homogeneous map germ, (G is one of Mather's groups A or K.) and show that any G-pre-weighted homogeneous map germ is G-finitely determined. We also give an explicit order, based on the Newton polyhedron of a pre-weighted homogeneous germ of function, such that the topological structure is preserved after perturbations by terms of higher order.
Resumo:
In this paper, we consider a vector optimization problem where all functions involved are defined on Banach spaces. We obtain necessary and sufficient criteria for optimality in the form of Karush-Kuhn-Tucker conditions. We also introduce a nonsmooth dual problem and provide duality theorems.