47 resultados para Structures of the holdings
Resumo:
The reactivity of the mer-[RuCl3(dppb)H2O] complex (1) with di-hydrogen shows that the products formed depend on the conditions of the reaction, i.e., solvents and presence or absence of a base. The new mixed-valence complexes [(diop)ClRu-(h-Cl)(3)-RuCl(dppb)] (3), [(binap)CIRu-(p-Cl)(3)-RuCl(dppb)] (4), [(PPh3)(2)ClRu-(mu-Cl)(3)-RuCl(dppb)] (6), [(dppn)ClRu-(mu-Cl)(3)-RuCl(dppb)] (7), [(P-ptol(3))(2)ClRu-(mu-Cl)(3)-RuCl(dppb)] (8), [(SbPh3)(2)ClRu-(mu-Cl)(3)-RuCl(dppb)] (9), [(eta(6)-C6H6)Ru-(mu-Cl)(3)-RuCl(dppb)] (11) and the known mixed-valence [(dppb)CIRu-(mu-Cl)(3)-RuCl(dppb)] (5) and [(diop)ClRu-(mu-Cl)(3)-RuCl(diop)] (10) were synthesized from complexes (1) or (2) using a methodology developed in our research group. The known complexes [(dppb)ClRu-(mu-Cl)(2)-RuCl(dppb)] (12), [(dppb)(CO)Ru-(mu-Cl)(3)-RuCl(dppb)] (13) and [H2NEt2][(dppb)ClRu-(mu-Cl)(3)-RuCl(dppb)] (14) were synthesized by changing the reaction conditions between mer-[RuCl3(dppb)H2O] (1) and dihydrogen. The crystal structures of (5) and (11) were determined by single-crystal X-ray diffraction. Some of the complexes described here are effective pre-catalysts for the hydrogenation of imines. Preliminary results on the homogeneous hydrogenation of the imines Ph-CH2-N=CH-Ph and Ph-N=CH-Ph are presented. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In order to obtain the quantum-mechanical properties of layered semicondutor structures (quantum well and superlattice structures, for instance), solutions of the Schrodinger equation should be obtained for arbitrary potential profiles. In this paper, it is shown that such problems may be also studied by the Element Free Galerkin Method.
Resumo:
The reactions of the pseudohalide-bridged dimer [Pd(N,C-dmba)(mu -SCN)](2) (1) (dmba = N,N-dimethylbenzylamine) with cis-Ph2PCH=CHPPh2 (cis-dppet) (1:1 molar ratio) and of [Pd(N,C-dmba)(mu -NCO)](2) (2) with Ph2PCH2CH2PPh2 (dppe) (1:2 molar ratio) gave mononuclear [Pd(C-dmba)(SCN)(cis-dppet)].H2O (1a) and [Pd(C-dmba)(NCO)(dppe)] (2a), respectively, with the diphosphines acting as chelating ligands. Reaction of (2) with Fe(C5H4PPh2)(2) (dppf) (1:1 molar ratio) yielded [{Pd(N,C-dmba)(NCO)}(2)(mu -dppf)] (2b), a bimetallic species containing two palladium atoms bridged by the diphosphine, whereas reaction in a 1:2 molar ratio gave the mononuclear [Pd(N,C-dmba)(dppf)][NCO]. CH2Cl2 (2c), with the diphosphine acting as a chelating ligand. The compounds have been characterized by elemental analysis, i.r., P-31{H-1}, C-13- and H-1-n.m.r. spectroscopies. Conductivity measurements together with spectroscopic data showed that (1a) and (2a) do not have the same structure in the solid state and in MeCl solution, whereas for compounds (2b) and (2c) no structural changes were observed when the solids were dissolved in MeCl.
Resumo:
The fac-[RuCl3(NO)(dppm)] (1) and cis-[RuCl2(dppm)2] (2) complexes were obtained with co-crystallization in the solid state from the reaction of RuCl3(NO) with the diphosphine in dichloromethane. mer-[RuCl3(NO)(dppb)] (3) was obtained from [RuCl3(dppb)(H2O)] by bubbling NO for 30 min in the same solvent. The crystal and molecular structures of these three compounds have been determined from X-ray studies. © Elsevier Science Ltd.
Resumo:
Weight reduction and improved damage tolerance characteristics were the prime drivers to develop new family of materials for the aerospace/ aeronautical industry. Aiming this objective, a new lightweight Fiber/ Metal Laminate (FML) has been developed. The combination of metal and polymer composite laminates can create a synergistic effect on many properties. The mechanical properties of FML shows improvements over the properties of both aluminum alloys and composite materials individually. Due to their excellent properties, FML are being used as fuselage skin structures of the next generation commercial aircrafts. One of the advantages of FML when compared with conventional carbon fiber/epoxy composites is the low moisture absorption. The moisture absorption in FML composites is slower when compared with polymer composites, even under the relatively harsh conditions, due to the barrier of the aluminum outer layers. Due to this favorable atmosphere, recently big companies such as EMBRAER, Aerospatiale, Boing, Airbus, and so one, starting to work with this kind of materials as an alternative to save money and to guarantee the security of their aircrafts.
Resumo:
Aim: To evaluate the influence of construction bite in the dentoskeletal changes induced by Klammt Appliance. Methods: The sample consisted of 17 children, with Class II malocclusion and initial mean age of 8.5 years. The construction bite was obtained using an Exactobite on edge-toedge anteroposterior relationship with 3 mm interincisal clearance. The height of the acrylic was determined by initial overbite associated to interincisal clearance and measured with digital caliper. The amount of advancement was obtained and measured by initial overjet in the lateral radiography. Pearson's correlation, linear regression and ANOVA were used to determine the relationship between dentoskeletal and construction bite variables. Results: The increase in the height of the acrylic promotes a greater inhibition of the forward displacement of the nasal spine and reduction in the facial growth index. The increase in the mandibular advancement induces more downward displacement of nasal spine and pogonion; a counter-clockwise rotation of palatine plane; an increase in mandibular length, maxillary alveolar height and interincisal angle; a decrease in mandibular alveolar height, the intermaxillary discrepancy and overjet; and palatal tipping of upper incisors. Conclusions: The different dimensions of the construction bite influence the dentoskeletal changes induced by the appliance in Class II treatment.
Resumo:
The Finite Element Method is a well-known technique, being extensively applied in different areas. Studies using the Finite Element Method (FEM) are targeted to improve cardiac ablation procedures. For such simulations, the finite element meshes should consider the size and histological features of the target structures. However, it is possible to verify that some methods or tools used to generate meshes of human body structures are still limited, due to nondetailed models, nontrivial preprocessing, or mainly limitation in the use condition. In this paper, alternatives are demonstrated to solid modeling and automatic generation of highly refined tetrahedral meshes, with quality compatible with other studies focused on mesh generation. The innovations presented here are strategies to integrate Open Source Software (OSS). The chosen techniques and strategies are presented and discussed, considering cardiac structures as a first application context. © 2013 E. Pavarino et al.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this study the occurrence of sensory structures on the antennules and antennae of the giant river prawn Macrobrachium rosenbergii (De Man) during postembryonic ontogenetic development were examined. Larvae and postlarvae were obtained from hatchery recirculating tanks, juveniles from indoor nursery tanks, and adults from earthen grow-out ponds. The animals were fixed with Karnovsky fixative and dissected. Antennules and antennae were removed, metal-coated, and photodocumented using a scanning electron microscope. The antennules have aesthetascs and simple plumose and pappose setae; the antennae have simple, plumose and pappose setae. These structures increase in density, covered surface, and distribution during ontogeny and should be related to chemoreception and mechanoreception. The antennular statocyst that appears during larval stage VII of the giant river prawn has an array of sensory structures that enable the perception of chemical and tactile stimuli beginning with its early life stages. The ontogenetic changes observed allow an inference that initial-stage larvae, advance-stage larvae, juveniles, and adults have different capacities to exploit the environment.
Resumo:
Classical procedures for model updating in non-linear mechanical systems based on vibration data can fail because the common linear metrics are not sensitive for non-linear behavior caused by gaps, backlash, bolts, joints, materials, etc. Several strategies were proposed in the literature in order to allow a correct representative model of non-linear structures. The present paper evaluates the performance of two approaches based on different objective functions. The first one is a time domain methodology based on the proper orthogonal decomposition constructed from the output time histories. The second approach uses objective functions with multiples convolutions described by the first and second order discrete-time Volterra kernels. In order to discuss the results, a benchmark of a clamped-clamped beam with an pre-applied static load is simulated and updated using proper orthogonal decomposition and Volterra Series. The comparisons and discussions of the results show the practical applicability and drawbacks of both approaches.