140 resultados para Secreted aspartyl peptidases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dietary carbohydrates provide an important source of energy for flight, and contribute to longevity and fecundity of mosquitoes. The most common sugar mosquitoes ingest is sucrose, and digestion of this substance is carried out mainly by alpha-glucosidases. In the current work, we tested the efficiency of sucrose on Anopheles aquasalis female diet. The best longevity (days) was reached when sugar was available in the diet, whereas most only blood fed females were dead 6 days after emergence. Three alpha-glucosidase isoforms were detected in the adult female midgut, named alpha Glu1, alpha Glu2 and alpha Glu3. These are acidic alpha-glucosidases with optima pH around pH 5.5. alpha Glu1 and alpha Glu2 are present in both secreted and membrane-bound forms, whereas alpha Glu3 only in anchored to membranes. The alpha-glucosidase activity is concentrated mainly in the posterior midgut (70%), both in non-fed or 10% sucrose fed females. The single form of these a-glucosidases seemed to be similar to 70 kDa polypeptides, although alpha Glu2 is presented in >= 600 kDa self-aggregates. K, values of alpha Glu1, alpha Glu2 and alpha Glu3 differed significantly from each other, supporting the statement that three alpha-glucosidases are produced in the female midgut. Together, all data suggest that sugar is an essential component of A. aquasalis female diet. In addition, alpha-glucosidases are synthesized in the same place where sucrose is digested and absorbed, the midgut. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the major questions concerning Giardia is the understanding of pathophysiological processes associated with small intestine abnormalities. There are evidences that Giardia trophozoites contain and/or release proteolytic enzymes that may be implicated in the host intestinal epithelium. The present investigation was undertaken to examine the protease activity in excretory/secretory (E/S) products of Giardia duodenalis trophozoites of an axenic Brazilian strain (BTU-11) and the reference strain Portland 1 (P1). E/S products from trophozoites of each strain in conditioned medium were tested with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for the protein profiles, and the protease activity was analyzed using substrate-impregnated SDS-PAGE (gelatin and collagen) and hemoglobin assay. The proteases characterization was based on inhibition assays including synthetic inhibitors. Electrophoresis analysis of E/S products revealed a banding pattern composed by few bands (4 to 6 bands) in the migration region of 123 to 28 kDa. Proteolytic products were detected in the conditioned medium by trophozoites of both assayed strains. In the gels containing copolymerized gelatin and collagen, E/S products promoted substrate degradation and the most evident proteolysis zones were distributed in the migration regions of 77 to 18 kDa and 145 to 18 kDa, respectively, in the patterns of gelatinolytic and collagenolytic activities. Degradation of hemoglobin was also observed, and the pattern of hydrolysis was similar in both E/S products assayed. Inhibitor assays showed that the main proteolytic activity in both E/S products is due to cysteine proteases, although the presence of serine proteases was also indicated. Degradation of substrates including collagen and hemoglobin could lead us to speculate different functions of Giardia excreted/secreted proteases in vivo, but to confirm this possibility and to elucidate its implication on host-parasite interactions, further experiments applying protocols for the purification of proteases are necessary. Even so, our observations are relevant and hold the perspective for the understanding about protease activity in Giardia trophozoites of axenic strain isolated in an endemic area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sarafotoxins are peptides isolated from the Atractaspisw snake venom. with strong constrictor effect on cardiac and smooth muscle. They are structurally and functionally related to endothelins. The sarafotoxins precursor cDNA predicts an unusual structure 'rosary-type', with 12 successive similar stretches of sarafotoxin (SRTX) and spacer, in the present work, the recombinant precursor of SRTXs was sub-cloned and expressed in the yeast Pichia pastoris. and secreted to the culture medium, Characterization by SDS-PAGE, immunoblot, mass spectrometry and biological activity, suggests that intact precursor was expressed but processing into mature toxins also occurred. Furthermore, our results indicate that the correct proportion of sarafotoxin types as contained in the precursor, is obtained in the yeast culture medium. Contractile effects of the expressed toxins, on rat and Bothrops jararaca isolated aorta, were equivalent to 5 X 10(-10) M and 5 x 10(-11) M of sarafotoxin b, respectively. The enzymes responsible for the complete maturation of sarafotoxins precursor are still unknown. Our results strongly suggest that the yeast Pichia pastoris is able to perform such a maturation process. Thus, the yeast Pichia pastoris may offer an alternative to snake venom gland to tentatively identify the molecular process responsible for SRTXs release. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four antimicrobial peptides were purified from Royal Jelly of honeybees, by using reverse phase-HPLC and sequenced by using Q-Tof-MS/MS: PFKLSLHL-NH2 (Jelleine-I), TPFKLSLHL-NH2 (Jelleine-II), EPFKLSLHL-NH2 (Jelleine-III), and TPFKLSLH-NH2 (Jelleine-IV). The peptides were synthesized on-solid phase, purified and submitted to different biological assays: antimicrobial activity, mast cell degranulating activity and hemolysis. The Jelleines-I-III presented exclusively antimicrobial activities against yeast, Gram+ and Gram- bacteria; meanwhile, Jelleine-IV was not active in none of the assays performed. These peptides do not present any similarity with the other antimicrobial peptides from the honeybees; they are produced constitutively by the workers and secreted into Royal Jelly. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Termites are eusocial insects that have a peculiar and intriguing system of communication using pheromones. The termite pheromones are composed of a blend of chemical substances and they coordinate different social interactions or activities, including foraging, building, mating, defense, and nestmate recognition. Some of these sociochemicals are volatile, spreading in the air, and others are contact pheromones, which are transmitted by trophallaxis and grooming. Among the termite semiochemicals, the most known are alarm, trail, sex pheromones, and hydrocarbons responsible for the recognition of nestmates. The sources of the pheromones are exocrine glands located all over the termite body. The principal exocrine structures considered pheromone-producing glands in Isoptera are the frontal, mandibular, salivary or labial, sternal, and tergal glands. The frontal gland is the source of alarm pheromone and defensive chemicals, but the mandibular secretions have been little studied and their function is not well established in Isoptera. The secretion of salivary glands involves numerous chemical compounds, some of them without pheromonal function. The worker saliva contains a phagostimulating pheromone and probably a building pheromone, while the salivary reservoir of some soldiers contains defensive chemicals. The sternal gland is the only source of trail-following pheromone, whereas sex pheromones are secreted by two glandular sources, the sternal and tergal glands. To date, the termite semiochemicals have indicated that few molecules are involved in their chemical communication, that is, the same compound may be secreted by different glands, different castes and species, and for different functions, depending on the concentration. In addition to the pheromonal parsimony, recent studies also indicate the occurrence of a synergic effect among the compounds involved in the chemical communication of Isoptera. (C) 2010 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The protein complement of the secretion from hypopharyngeal gland of nurse-bees (Apis mellifera L.) was partially identified by using a combination of 2D-PAGE, peptide sequencing by MALDI-PSD/MS and a protein engine identification tool applied to the honeybee genome. The proteins identified were compared to those proteins already identified in the proteome complement of the royal jelly of the honey bees. The 2D gel electrophoresis demonstrated this protein complement is constituted of 61 different polypepides, from which 34 were identified as follows: 27 proteins belonged to MRJPs family, 5 proteins were related to the metabolism of carbohydrates and to the oxido-reduction metabolism of energetic Substrates, I protein was related to the accumulation of iron in honeybee bodies and I protein may be a regulator of MRJP-1 oligomerization. The proteins directly involved with the carbohydrates and energetic metabolisms were: alpha glucosidase, glucose oxidase and alpha amylase, whose are members of the same family of enzymes, catalyzing the hydrolysis of the glucosidic linkages of starch; alcohol dehydrogenase and aldehyde dehydrogenase, whose are constituents of the energetic metabolism. The results of the present manuscript support the hypothesis that the most of these proteins are produced in the hypoharyngeal gland of nurse-bees and secreted into the RJ. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)