76 resultados para Rotational motion (Rigid dynamics)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study was carried out to analyze the tillering profile of Guinea grass (Panicum maximum cv. Tanzania) pastures subjected to two grazing frequencies (time necessary to intercept 90 and 95% of the incoming light) and two post-grazing heights (30 and 50 cm) in the period from November 2005 to October 2006. The experimental design was of completely randomized blocks with three replications, in a 2 × 2 factorial arrangement. At the end of the spring, pastures managed with 90% light interception showed greater tiller appearance rates in relation to pastures managed with 95%, regardless of post-grazing height. In the summer and fall, pastures managed with post-grazing height of 30 cm showed higher tiller appearance rates in comparison with pastures managed at 50 cm, regardless of grazing frequency. Concerning the tiller mortality rates, in the summer, higher values were found for pastures managed at 90/50 and 95/30 (interception/height), intermediate values at 90/30 and lower values in those managed at 95/50. Pastures managed at 90/30, 95/30 and 95/50 in the fall presented greater tiller mortality rates than those managed at 90/50. These differences do not occur in the winter/beginning of spring. The stability index remained above 1 all through the experimental period. All management strategies evaluated are adequate for Guinea grass.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper proposes a different experimental setup compared with the traditional ones, in order to determine the acceleration of gravity, which is carried out by using a fluid at a constant rotation. A computerized rotational system-by using a data acquisition system with specific software, a power amplifier and a rotary motion sensor-is employed in order to evaluate the angular velocity and g. An equation to determine g is inferred from fluid mechanics. For this purpose, the fluid's parabolic shape inside a cylindrical receptacle is considered using a rotational movement.
Resumo:
The equations corresponding to Newton-Euler iterative method for the determination of forces and moments acting on the rigid links of a robotic manipulator are given a new treatment using composed vectors for the representation of both kinematical and dynamical quantities. It is shown that Lagrange equations for the motion of a holonomic system are easily found from the composed vectors defined in this note. Application to a simple model of an industrial robot shows that the method developed in these notes is efficient in solving the dynamics of a robotic manipulator. An example is developed, where it is seen that with the application of appropriate control moments applied to each arm of the robot, starting from a given initial position, it is possible to reach equilibrium in a final pre-assigned position.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Eleven nests of Ectatomma opaciventre were collected from January to December, 1994, in Rio Claro, SP, southeastern Brazil. This species excavates their nests up to 68 cm deep, containing 3, 4 or 5 chambers. The hole of entrance has a chimney-like rigid structure, with up to 2/5 cm high. The most numerous colonies were found in January and February, with 47 and 62 adult ants, respectively. The quantity of individuals decreased from March, being observed colonies with only 9 adult ants in June and July. The colony population increased again since September. Reproductive forms (winged ants) were observed between October and February. We did not observed immature stages in July, but they were numerous between September and March. There was a significant correlation between the number of colony individuals and temperature, but not between the number of colony individuals and relative humidity and rainfall. E. opaciventre is a species of hunter ants which have not an efficient recruitment system for food collecting, consequently their colonies are small due to the scarcity of food resources during the colder and dry months.
Resumo:
Aims. We study trajectories of planetesimals whose orbits decay due to gas drag in a primordial solar nebula and are perturbed by the gravity of the secondary body on an eccentric orbit whose mass ratio takes values from mu(2) = 10(-7) to mu(2) = 10(-3) increasing ten times at each step. Each planetesimal ultimately suffers one of the three possible fates: (1) trapping in a mean motion resonance with the secondary body; (2) collision with the secondary body and consequent increase of its mass; or (3) diffusion after crossing the orbit of the secondary body.Methods. We take the Burlirsh-Stoer numerical algorithm in order to integrate the Newtonian equations of the planar, elliptical restricted three-body problem with the secondary body and the planetesimal orbiting the primary. It is assumed that there is no interaction among planetesimals, and also that the gas does not affect the orbit of the secondary body.Results. The results show that the optimal value of the gas drag constant k for the 1: 1 resonance is between 0.9 and 1.25, representing a meter size planetesimal for each AU of orbital radius. In this study, the conditions of the gas drag are such that in theory, L4 no longer exists in the circular case for a critical value of k that defines a limit size of the planetesimal, but for a secondary body with an eccentricity larger than 0.05 when mu(2) = 10(-6), it reappears. The decrease of the cutoff collision radius increase the difusions but does not affect the distribution of trapping. The contribution to the mass accretion of the secondary body is over 40% with a collision radius 0.05R(Hill) and less than 15% with 0.005R(Hill) for mu(2) = 10(-7). The trappings no longer occur when the drag constant k reachs 30. That means that the size limit of planetesimal trapping is 0.2 m per AU of orbital radius. In most cases, this accretion occurs for a weak gas drag and small secondary eccentricity. The diffusions represent most of the simulations showing that gas drag is an efficient process in scattering planetesimals and that the trapping of planetesimals in the 1: 1 resonance is a less probable fate. These results depend on the specific drag force chosen.
Resumo:
The nonequilibrium effective equation of motion for a scalar background field in a thermal bath is studied numerically. This equation emerges from a microscopic quantum field theory derivation and it is suitable to a Langevin simulation on the lattice. Results for both the symmetric and broken phases are presented.
Resumo:
We propose a SUSY variant of the action for a massless spinning particles via the inclusion of twistor variables. The action is constructed to be invariant under SUSY transformations and tau-reparametrizations even when an interaction field is including. The constraint analysis is achieved and the equations of motion are derived. The commutation relations obtained for the commuting spinor variables lambda(alpha) show that the particle states have fractional statistics and spin. At once we introduce a possible massive term for the non-interacting model.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The time evolution of the matter produced in high energy heavy-ion collisions seems to be well described by relativistic viscous hydrodynamics. In addition to the hydrodynamic degrees of freedom related to energy-momentum conservation, degrees of freedom associated with order parameters of broken continuous symmetries must be considered because they are all coupled to each other. of particular interest is the coupling of degrees of freedom associated with the chiral symmetry of QCD. Quantum and thermal fluctuations of the chiral fields act as noise sources in the classical equations of motion, turning them into stochastic differential equations in the form of Ginzburg-Landau-Langevin (GLL) equations. Analytic solutions of GLL equations are attainable only in very special circumstances and extensive numerical simulations are necessary, usually by discretizing the equations on a spatial lattice. However, a not much appreciated issue in the numerical simulations of GLL equations is that ultraviolet divergences in the form of lattice-spacing dependence plague the solutions. The divergences are related to the well-known Rayleigh-Jeans catastrophe in classical field theory. In the present communication we present a systematic lattice renormalization method to control the catastrophe. We discuss the implementation of the method for a GLL equation derived in the context of a model for the QCD chiral phase transition and consider the nonequilibrium evolution of the chiral condensate during the hydrodynamic flow of the quark-gluon plasma.
Resumo:
We investigate the dynamics of a Duffing oscillator driven by a limited power supply, such that the source of forcing is considered to be another oscillator, coupled to the first one. The resulting dynamics come from the interaction between both systems. Moreover, the Duffing oscillator is subjected to collisions with a rigid wall (amplitude constraint). Newtonian laws of impact are combined with the equations of motion of the two coupled oscillators. Their solutions in phase space display periodic (and chaotic) attractors, whose amplitudes, especially when they are too large, can be controlled by choosing the wall position in suitable ways. Moreover, their basins of attraction are significantly modified, with effects on the final state system sensitivity. (c) 2005 Elsevier Ltd. All rights reserved.