9 resultados para Rotational motion (Rigid dynamics)

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of meso-phenyloctamethylporphyrins covalently bonded at the 4'phenyl position to quinones via rigid bicyclo[2.2.2]octane spacers were synthesized for the study of the dependence of electron transfer reaction rate on solvent, distance, temperature, and energy gap. A general and convergent synthesis was developed based on the condensation of ac-biladienes with masked quinonespacer-benzaldehydes. From picosecond fluorescence spectroscopy emission lifetimes were measured in seven solvents of varying polarity. Rate constants were determined to vary from 5.0x109sec-1 in N,N-dimethylformamide to 1.15x1010 Sec-1 in benzene, and were observed to rise at most by about a factor of three with decreasing solvent polarity. Experiments at low temperature in 2-MTHF glass (77K) revealed fast, nearly temperature-independent electron transfer characterized by non-exponential fluorescence decays, in contrast to monophasic behavior in fluid solution at 298K. This example evidently represents the first photosynthetic model system not based on proteins to display nearly temperature-independent electron transfer at high temperatures (nuclear tunneling). Low temperatures appear to freeze out the rotational motion of the chromophores, and the observed nonexponential fluorescence decays may be explained as a result of electron transfer from an ensemble of rotational conformations. The nonexponentiality demonstrates the sensitivity of the electron transfer rate to the precise magnitude of the electronic matrix element, which supports the expectation that electron transfer is nonadiabatic in this system. The addition of a second bicyclooctane moiety (15 Å vs. 18 Å edge-to-edge between porphyrin and quinone) reduces the transfer rate by at least a factor of 500-1500. Porphyrinquinones with variously substituted quinones allowed an examination of the dependence of the electron transfer rate constant κET on reaction driving force. The classical trend of increasing rate versus increasing exothermicity occurs from 0.7 eV≤ |ΔG0'(R)| ≤ 1.0 eV until a maximum is reached (κET = 3 x 108 sec-1 rising to 1.15 x 1010 sec-1 in acetonitrile). The rate remains insensitive to ΔG0 for ~ 300 mV from 1.0 eV≤ |ΔG0’(R)| ≤ 1.3 eV, and then slightly decreases in the most exothermic case studied (cyanoquinone, κET = 5 x 109 sec-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part I

Studies of vibrational relaxation in excited electronic states of simple diatomic molecules trapped in solid rare-gas matrices at low temperatures are reported. The relaxation is investigated by monitoring the emission intensity from vibrational levels of the excited electronic state to vibrational levels of the ground electronic state. The emission was in all cases excited by bombardment of the doped rare-gas solid with X-rays.

The diatomics studied and the band systems seen are: N2, Vegard-Kaplan and Second Positive systems; O2, Herzberg system; OH and OD, A 2Σ+ - X2IIi system. The latter has been investigated only in solid Ne, where both emission and absorption spectra were recorded; observed fine structure has been partly interpreted in terms of slightly perturbed rotational motion in the solid. For N2, OH, and OD emission occurred from v' > 0, establishing a vibrational relaxation time in the excited electronic state of the order, of longer than, the electronic radiative lifetime. The relative emission intensity and decay times for different v' progressions in the Vegard-Kaplan system are found to depend on the rare-gas host and the N2 concentration, but are independent of temperature in the range 1.7°K to 30°K.

Part II

Static crystal field effects on the absorption, fluorescence, and phosphorescence spectra of isotopically mixed benzene crystals were investigated. Evidence is presented which demonstrate that in the crystal the ground, lowest excited singlet, and lowest triplet states of the guest deviate from hexagonal symmetry. The deviation appears largest in the lowest triplet state and may be due to an intrinsic instability of the 3B1u state. High resolution absorption and phospho- rescence spectra are reported and analyzed in terms of site-splitting of degenerate vibrations and orientational effects. The guest phosphorescence lifetime for various benzene isotopes in C6D6 and sym-C6H3D3 hosts is presented and discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The lateral migration of neutrally buoyant rigid spheres in two-dimensional unidirectional flows was studied theoretically. The cases of both inertia-induced migration in a Newtonian fluid and normal stress-induced migration in a second-order fluid were considered. Analytical results for the lateral velocities were obtained, and the equilibrium positions and trajectories of the spheres compared favorably with the experimental data available in the literature. The effective viscosity was obtained for a dilute suspension of spheres which were simultaneously undergoing inertia-induced migration and translational Brownian motion in a plane Poiseuille flow. The migration of spheres suspended in a second-order fluid inside a screw extruder was also considered.

The creeping motion of neutrally buoyant concentrically located Newtonian drops through a circular tube was studied experimentally for drops which have an undeformed radius comparable to that of the tube. Both a Newtonian and a viscoelastic suspending fluid were used in order to determine the influence of viscoelasticity. The extra pressure drop due to the presence of the suspended drops, the shape and velocity of the drops, and the streamlines of the flow were obtained for various viscosity ratios, total flow rates, and drop sizes. The results were compared with existing theoretical and experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of experiments was conducted on the use of a device to passively generate vortex rings, henceforth a passive vortex generator (PVG). The device is intended as a means of propulsion for underwater vehicles, as the use of vortex rings has been shown to decrease the fuel consumption of a vehicle by up to 40% Ruiz (2010).

The PVG was constructed out of a collapsible tube encased in a rigid, airtight box. By adjusting the pressure within the airtight box while fluid was flowing through the tube, it was possible to create a pulsed jet with vortex rings via self-excited oscillations of the collapsible tube.

A study of PVG integration into an existing autonomous underwater vehicle (AUV) system was conducted. A small AUV was used to retrofit a PVG with limited alterations to the original vehicle. The PVG-integrated AUV was used for self-propelled testing to measure the hydrodynamic (Froude) efficiency of the system. The results show that the PVG-integrated AUV had a 22% increase in the Froude efficiency using a pulsed jet over a steady jet. The maximum increase in the Froude efficiency was realized when the formation time of the pulsed jet, a nondimensional time to characterize vortex ring formation, was coincident with vortex ring pinch-off. This is consistent with previous studies that indicate that the maximization of efficiency for a pulsed jet vehicle is realized when the formation of vortex rings maximizes the vortex ring energy and size.

The other study was a parameter study of the physical dimensions of a PVG. This study was conducted to determine the effect of the tube diameter and length on the oscillation characteristics such as the frequency. By changing the tube diameter and length by factors of 3, the frequency of self-excited oscillations was found to scale as f~D_0^{-1/2} L_0^0, where D_0 is the tube diameter and L_0 the tube length. The mechanism of operation is suggested to rely on traveling waves between the tube throat and the end of the tube. A model based on this mechanism yields oscillation frequencies that are within the range observed by the experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation presents the results of studies of several rotationally- resolved resonance enhanced multiphoton ionization (REMPI) processes in some simple molecular systems. The objective of these studies is to quantitatively identify the underlying dynamics of this highly state-specific process which utilizes the narrow bandwidth radiation of a laser to ionize a molecule by first preparing an excited state via multiphoton absorption and subsequently ionizing that state before it can decay. Coupled with high-resolution photoelectron spectroscopy, REMPI is clearly an important probe of molecular excited states and their photoioniza tion dynamics.

A key feature of our studies is that they are carried out using accurate Hartree-Fock orbitals to describe the photoelectron orbitals of the molecular ions. The use of such photoelectron orbitals is important in rotationally-resolved studies where the angular momentum coupling in the photoelectron orbital plays a significant role in the photoionization dynamics. In these studies the Hartree-Fock molecular molecular photoelectron orbitals are obtained by numerical solution of a Lippmann-Schwinger integral equation.

Studies reported here include investigations of (i) ionic rotational branching ratios and their energy dependence for REMPI via the A^2Σ^+(3sσ) and D^2Σ^+(3pσ)states of NO, (ii) the influence of angular momentum constraints on branching ratios at low photoelectron energies for REMPI via low-J levels of the resonant intermediate state, (iii) the strong dependence of photoelectron angular distributions on final ionic rotational state and on the alignment in REMPI of the A^2Σ^+ state of NO, (iv) vibrational state dependence of ionic rotational branching ratios arising from rapid orbital evolution in resonant states (E'^2Σ^+(3pσ) of CH), (v) the influence of rovibronic interactions on the rotational branching ratios seen in REMPI via the D^2Σ^+(3pσ) state of NO, and (vi) effects of laser intensity on the photoionization dynamics of REMPI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous studies have shown that flexible materials improve resilience and durability of a structure. Several studies have investigated the behavior of elastic plates under the influence of a free stream, such as studies of the fluttering flag and others of shape reconfiguration, due to a free stream.

The principle engineering contribution of this thesis is the design and development of a vertical axis wind turbine that features pliable blades which undergo various modes of behavior, ultimately leading to rotational propulsion of the turbine. The wind turbine design was tested in a wind tunnel and at the Caltech Laboratory for Optimized Wind Energy. Ultimately, the flexible blade vertical axis wind turbine proved to be an effective way of harnessing the power of the wind.

In addition, this body of work builds on the current knowledge of elastic cantilever plates in a free stream flow by investigating the inverted flag. While previous studies have focused on the fluid structure interaction of a free stream on elastic cantilever plates, none had studied the plate configuration where the trailing edge was clamped, leaving the leading edge free to move. Furthermore, the studies presented in this thesis establish the geometric boundaries of where the large-amplitude flapping occurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light has long been used for the precise measurement of moving bodies, but the burgeoning field of optomechanics is concerned with the interaction of light and matter in a regime where the typically weak radiation pressure force of light is able to push back on the moving object. This field began with the realization in the late 1960's that the momentum imparted by a recoiling photon on a mirror would place fundamental limits on the smallest measurable displacement of that mirror. This coupling between the frequency of light and the motion of a mechanical object does much more than simply add noise, however. It has been used to cool objects to their quantum ground state, demonstrate electromagnetically-induced-transparency, and modify the damping and spring constant of the resonator. Amazingly, these radiation pressure effects have now been demonstrated in systems ranging 18 orders of magnitude in mass (kg to fg).

In this work we will focus on three diverse experiments in three different optomechanical devices which span the fields of inertial sensors, closed-loop feedback, and nonlinear dynamics. The mechanical elements presented cover 6 orders of magnitude in mass (ng to fg), but they all employ nano-scale photonic crystals to trap light and resonantly enhance the light-matter interaction. In the first experiment we take advantage of the sub-femtometer displacement resolution of our photonic crystals to demonstrate a sensitive chip-scale optical accelerometer with a kHz-frequency mechanical resonator. This sensor has a noise density of approximately 10 micro-g/rt-Hz over a useable bandwidth of approximately 20 kHz and we demonstrate at least 50 dB of linear dynamic sensor range. We also discuss methods to further improve performance of this device by a factor of 10.

In the second experiment, we used a closed-loop measurement and feedback system to damp and cool a room-temperature MHz-frequency mechanical oscillator from a phonon occupation of 6.5 million down to just 66. At the time of the experiment, this represented a world-record result for the laser cooling of a macroscopic mechanical element without the aid of cryogenic pre-cooling. Furthermore, this closed-loop damping yields a high-resolution force sensor with a practical bandwidth of 200 kHZ and the method has applications to other optomechanical sensors.

The final experiment contains results from a GHz-frequency mechanical resonator in a regime where the nonlinearity of the radiation-pressure interaction dominates the system dynamics. In this device we show self-oscillations of the mechanical element that are driven by multi-photon-phonon scattering. Control of the system allows us to initialize the mechanical oscillator into a stable high-amplitude attractor which would otherwise be inaccessible. To provide context, we begin this work by first presenting an intuitive overview of optomechanical systems and then providing an extended discussion of the principles underlying the design and fabrication of our optomechanical devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hydromechanical theory is developed for cycloidal propellers for two limiting modes of operation wherein U » ΩR and U « ΩR, with U the rectilinear propeller speed (speed of advance) and ΩR the rotational blade speed. A first order theory is developed from the basic principles of the kinematics and dynamics of fluid motion and proceeds from the point of view of unsteady hydrofoil theory.

Explicit expressions for the instantaneous forces and moments produced by blade motions are presented. On the basis of these results an optimization procedure is carried out which minimizes the energy loss under the constraint of specified mean thrust. Under optimal conditions the propeller is found to possess high Froude efficiencies in both the high and low speed modes of propulsion. This efficiency is defined as the ratio of the average useful work obtained during one cycle of propeller operation to the average power input required to sustain the motion of the propeller during the cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toppling analysis of a precariously balanced rock (PBR) can provide insights into the nature of ground motion that has not occurred at that location in the past and, by extension, realistic constraints on peak ground motions for use in engineering design. Earlier approaches have targeted simplistic 2-D models of the rock or modeled the rock-pedestal contact using spring-damper assemblies that require re-calibration for each rock. These analyses also assume that the rock does not slide on the pedestal. Here, a method to model PBRs in three dimensions is presented. The 3-D model is created from a point cloud of the rock, the pedestal, and their interface, obtained using Terrestrial Laser Scanning (TLS). The dynamic response of the model under earthquake excitation is simulated using a rigid body dynamics algorithm. The veracity of this approach is demonstrated by comparisons against data from shake table experiments. Fragility maps for toppling probability of the Echo Cliff PBR and the Pacifico PBR as a function of various ground motion parameters, rock-pedestal interface friction coefficient, and excitation direction are presented. The seismic hazard at these PBR locations is estimated using these maps. Additionally, these maps are used to assess whether the synthetic ground motions at these locations resulting from scenario earthquakes on the San Andreas Fault are realistic (toppling would indicate that the ground motions are unrealistically high).