87 resultados para Rho
Resumo:
Asymptotic behavior of initially large and smooth pulses is investigated at two typical stages of their evolution governed by the defocusing nonlinear Schrodinger equation. At first, wave breaking phenomenon is studied in the limit of small dispersion. A solution of the Whitham modulational equations is found for the case of dissipationless shock wave arising after the wave breaking point. Then, asymptotic soliton trains arising eventually from a large and smooth initial pulse are studied by means of a semiclassical method. The parameter varying along the soliton train is calculated from the generalized Bohr-Sommerfeld quantization rule, so that the distribution of eigenvalues depends on two functions-intensity rho(0)(x) of the initial pulse and its initial chirp v(0)(x). The influence of the initial chirp on the asymptotic state is investigated. Excellent agreement of the numerical solution of the defocusing NLS equation with predictions of the asymptotic theory is found.
Resumo:
We make a careful study about the nonrelativistic reduction of one-meson-exchange models for the nonmesonic weak hypernuclear decay. Starting from a widely accepted effective coupling Hamiltonian involving the exchange of the complete pseudoscalar and vector meson octets (pi, eta, K, rho, omega, K*), the strangeness-changing weak LambdaN --> NN transition potential is derived, including two effects that have been systematically omitted in the literature, or, at best, only partly considered. These are the kinematical effects due to the difference between the lambda and nucleon masses, and the first-order nonlocality corrections, i.e., those involving up to first-order differential operators. Our analysis clearly shows that the main kinematical effect on the local contributions is the reduction of the effective pion mass. The kinematical effect on the nonlocal contributions is more complicated, since it activates several new terms that would otherwise remain dormant. Numerical results for C-12(Lambda) and He-5(Lambda) are presented and they show that the combined kinematical plus nonlocal corrections have an appreciable influence on the partial decay rates. However, this is somewhat diminished in the main decay observables: the total nonmesonic rate, Gamma(nm), the neutron-to-proton branching ratio, Gamma(n)/Gamma(p), and the asymmetry parameter, a(Lambda). The latter two still cannot be reconciled with the available experimental data. The existing theoretical predictions for the sign of a(Lambda) in He-5(Lambda) are confirmed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We search for the technicolor process p(p) over bar ->rho(T)/omega(T)-> W pi(T) in events containing one electron and two jets, in data corresponding to an integrated luminosity of 390 pb(-1), recorded by the D0 experiment at the Fermilab Tevatron. Technicolor predicts that technipions pi(T) decay dominantly into b(b) over bar, b(c) over bar, or (b) over barc, depending on their charge. In these events b and c quarks are identified by their secondary decay vertices within jets. Two analysis methods based on topological variables are presented. Since no excess above the standard model prediction was found, the result is presented as an exclusion in the pi(T) vs rho(T) mass plane for a given set of model parameters.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study the low-energy scattering of charmed (D) and strange (K) mesons by nucleons. The short-distance part of the interaction is due to quark-gluon interchanges derived from a model that realizes dynamical chiral symmetry breaking and confines color. The quark-gluon interaction incorporates a confining Coulomb-like potential extracted from lattice QCD simulations in Coulomb gauge and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The long-distance part of the interaction is due to single vector (rho, omega) and scalar (sigma) meson exchanges. We show results for scattering cross-sections for isospin I = 0 and I = 1.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We describe the derivation of an effective Hamiltonian which involves explicit hadron degrees of freedom and consistently combines chiral symmetry and color confinement. We use a method known as Fock-Tani (FT) representation and a quark model formulated in the context of Coulomb gauge QCD. Using this Hamiltonian, we evaluate the dissociation cross section of J/psi in collision with rho.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We report the preparation of direct hexagonal liquid crystals, constituted of oil-swollen cylinders arranged on a triangular lattice in water. The volume ratio of oil over water, rho, can be as large as 3.8. From the lattice parameter measured by small-angle X-ray scattering, we show that all the oil is indeed incorporated into the cylinders, thus allowing the diameter of the cylinders to be controlled over one decade range, provided that the ionic strength of the aqueous medium and rho are varied concomitantly. These hexagonal swollen liquid crystals (SLCs) have been first reported with sodium dodecyl sulfate as anionic surfactant, cyclohexane as solvent, 1-pentanol as co-surfactant, and sodium chloride as salt (Ramos, L.; Fabre, P. Langmuir 1997, 13, 13). The stability of these liquid crystals is investigated when the pH of the aqueous medium or the chemical nature of the components (salt and surfactant) is changed. We demonstrate that the range of stability is quite extended, rendering swollen hexagonal phases potentially useful for the fabrication of nanomaterials. As illustrations, we finally show that gelation of inorganic particles in the continuous aqueous medium of a SLC and polymerization within the oil-swollen cylinders of a SLC can be conducted without disrupting the hexagonal order of the system.
Resumo:
The present work presents results on natural sintering of tin dioxide ceramics, prepared by a chemical route or by conventional mixing and containing manganese (X-Mn = Mn/(Mn + Sn)(atomic) with 0 less than or equal to X(Mn)less than or equal to 0.15). This cation, which is practically insoluble in SnO2 network, stays at the grain surface. During thermal treatment (500 degrees C less than or equal to T-s less than or equal to 1400 degrees C), as long as the manganese surface concentration is lower than a critical value, equal to 5.10(-6) mol m(-2), no densification takes place. As soon as this value is reached, densification and grain growth occur simultaneously. The shrinkage kinetics is fast and high rho/rho(t) values can be obtained (for example. rho/rho(t)=0.95 for T-s=1300 degrees C and X-Mn=0.004). The dependence between manganese content, manganese distribution, grain size and sintering behaviour is also discussed. (C) 1998 Published by Elsevier B.V. Limited.
Resumo:
The combined CERN and Brookhaven heavy ion (H.I.) data supports a scenario of hadron gas which is in chemical and thermal equilibrium at a temperature T of about 140 MeV. Using the Brown-Stachel-Welke model (which gives 150 MeV) we show that in this scenario, the hot nucleons have mass 3 pi T and the pi and rho mesons have masses close to pi T and 2 pi T, respectively. A simple model with pions and quarks supports the co-existence of two phases in these heavy ion experiments, suggesting a second order phase transition. The masses of the pion, rho and the nucleon are intriguingly close to the lattice screening masses.