43 resultados para QUANTIZED WEYL ALGEBRA
Resumo:
In this article, we present quasiconformal mappings related to octonionic algebra. Based on the metric definition of quasiconformal mappings and using transformations of the type f(z)=zn, we compare the graphical and analytic results. © 2009 Pushpa Publishing House.
Resumo:
The rule creation to clone selection in different projects is a hard task to perform by using traditional implementations to control all the processes of the system. The use of an algebraic language is an alternative approach to manage all of system flow in a flexible way. In order to increase the power of versatility and consistency in defining the rules for optimal clone selection, this paper presents the software OCI 2 in which uses process algebra in the flow behavior of the system. OCI 2, controlled by an algebraic approach was applied in the rules elaboration for clone selection containing unique genes in the partial genome of the bacterium Bradyrhizobium elkanii Semia 587 and in the whole genome of the bacterium Xanthomonas axonopodis pv. citri. Copyright© (2009) by the International Society for Research in Science and Technology.
Resumo:
We show that the BRST cohomology of the massless sector of the Type IIB superstring on AdS(5) x S (5) can be described as the relative cohomology of an infinite-dimensional Lie superalgebra. We explain how the vertex operators of ghost number 1, which correspond to conserved currents, are described in this language. We also give some algebraic description of the ghost number 2 vertices, which appears to be new. We use this algebraic description to clarify the structure of the zero mode sector of the ghost number two states in flat space, and initiate the study of the vertices of the higher ghost number.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper we deal with the notion of regulated functions with values in a C*-algebra A and present examples using a special bi-dimensional C*-algebra of triangular matrices. We consider the Dushnik integral for these functions and shows that a convenient choice of the integrator function produces an integral homomorphism on the C*-algebra of all regulated functions ([a, b], A). Finally we construct a family of linear integral functionals on this C*-algebra.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We show that the partition function of the super eigenvalue model satisfies, for finite N (non-perturbatively), an infinite set of constraints with even spins s = 4, 6, . . . , ∞. These constraints are associated with half of the bosonic generators of the super (W∞/2 ⊕ W1+∞/2) algebra. The simplest constraint (s = 4) is shown to be reducible to the super Virasoro constraints, previously used to construct the model.
Resumo:
We use the Weyl-van der Waerden spinor technique to construct helicity wave functions for massless and massive spin-3/2 fermions. We apply our formalism to evaluate helicity amplitudes taking into account some phenomenological couplings involving these particles.
Resumo:
We construct higher-spin N = 1 superalgebras as extensions of the super-Virasoro algebra containing generators for all spins s ≥ 3/2. We find two distinct classical (Poisson) algebras on the phase superspace. Our results indicate that only one of them can be consistently quantized.
Resumo:
We show that by using second-order differential operators as a realization of the so(2,1) Lie algebra, we can extend the class of quasi-exactly-solvable potentials with dynamical symmetries. As an example, we dynamically generate a potential of tenth power, which has been treated in the literature using other approaches, and discuss its relation with other potentials of lowest orders. The question of solvability is also studied. © 1991 The American Physical Society.
Resumo:
Recently Lukierski et al. [1] defined a κ-deformed Poincaré algebra which is characterized by having the energy-momentum and angular momentum sub-algebras not deformed. Further Biedenharn et al. [2] showed that on gauging the κ-deformed electron with the electromagnetic field, one can set a limit on the allowed value of the deformation parameter ∈ ≡ 1/κ < 1 fm. We show that one gets Regge like angular excitations, J, of the mesons, non-strange and strange baryons, with a value of ∈ ∼ 0.082 fm and predict a flattening with J of the corresponding trajectories. The Regge fit improves on including deformation, particularly for the baryon spectrum.
Resumo:
Usually we observe that Bio-physical systems or Bio-chemical systems are many a time based on nanoscale phenomenon in different host environments, which involve many particles can often not be solved explicitly. Instead a physicist, biologist or a chemist has to rely either on approximate or numerical methods. For a certain type of systems, called integrable in nature, there exist particular mathematical structures and symmetries which facilitate the exact and explicit description. Most integrable systems, we come across are low-dimensional, for instance, a one-dimensional chain of coupled atoms in DNA molecular system with a particular direction or exist as a vector in the environment. This theoretical research paper aims at bringing one of the pioneering ‘Reaction-Diffusion’ aspects of the DNA-plasma material system based on an integrable lattice model approach utilizing quantized functional algebras, to disseminate the new developments, initiate novel computational and design paradigms.