34 resultados para Prediction Equations
Resumo:
We compare phenomenological values of the frozen QCD running coupling constant (alpha(s)) with two classes of infrared finite solutions obtained through nonperturbative Schwinger-Dyson equations. We use these same solutions with frozen coupling constants as well as their respective nonperturbative gluon propagators to compute the QCD prediction for the asymptotic pion form factor. Agreement between theory and experiment on alpha(s)(0) and F (pi)(Q(2)) is found only for one of the Schwinger-Dyson equation solutions.
Resumo:
This paper presents a general modeling approach to investigate and to predict measurement errors in active energy meters both induction and electronic types. The measurement error modeling is based on Generalized Additive Model (GAM), Ridge Regression method and experimental results of meter provided by a measurement system. The measurement system provides a database of 26 pairs of test waveforms captured in a real electrical distribution system, with different load characteristics (industrial, commercial, agricultural, and residential), covering different harmonic distortions, and balanced and unbalanced voltage conditions. In order to illustrate the proposed approach, the measurement error models are discussed and several results, which are derived from experimental tests, are presented in the form of three-dimensional graphs, and generalized as error equations. © 2009 IEEE.
Resumo:
An analytical approach for spin stabilized attitude propagation is presented, considering the coupled effect of the aerodynamic torque and the gravity gradient torque. A spherical coordination system fixed in the satellite is used to locate the satellite spin axis in relation to the terrestrial equatorial system. The spin axis direction is specified by its right ascension and the declination angles and the equation of motion are described by these two angles and the magnitude of the spin velocity. An analytical averaging method is applied to obtain the mean torques over an orbital period. To compute the average components of both aerodynamic torque and the gravity gradient torque in the satellite body frame reference system, an average time in the fast varying orbit element, the mean anomaly, is utilized. Afterwards, the inclusion of such torques on the rotational motion differential equations of spin stabilized satellites yields conditions to derive an analytical solution. The pointing deviation evolution, that is, the deviation between the actual spin axis and the computed spin axis, is also availed. In order to validate the analytical approach, the theory developed has been applied for spin stabilized Brazilian satellite SCD1, which are quite appropriated for verification and comparison of the data generated and processed by the Satellite Control Center of the Brazil National Research Institute (INPE). Numerical simulations performed with data of Brazilian Satellite SCD1 show the period that the analytical solution can be used to the attitude propagation, within the dispersion range of the attitude determination system performance of Satellite Control Center of the Brazilian Research Institute.
Resumo:
The aim of this paper is to present an analytical solution for the spin motion equations of spin-stabilized satellite considering only the influence of solar radiation torque. The theory uses a cylindrical satellite on a circular orbit and considers that the satellite is always illuminated. The average components of this torque were determined over an orbital period. These components are substituted in the spin motion equations in order to get an analytical solution for the right ascension and declination of the satellite spin axis. The time evolution for the pointing deviation of the spin axis was also analyzed. These solutions were numerically implemented and compared with real data of the Brazilian Satellite of Data Collection - SCD1 an SCD2. The results show that the theory has consistency and can be applied to predict the spin motion of spin-stabilized artificial satellites.