184 resultados para Optimal Control Problems
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper aims with the use of linear matrix inequalities approach (LMIs) for application in active vibration control problems in smart strutures. A robust controller for active damping in a panel was designed with piezoelectrical actuators in optimal locations for illustration of the main proposal. It was considered, in the simulations of the closed-loop, a model identified by eigensystem realization algorithm (ERA) and reduced by modal decomposition. We tested two differents techniques to solve the problem. The first one uses LMI approach by state-feedback based in an observer design, considering several simultaneous constraints as: a decay rate, limited input on the actuators, bounded output peak (output energy) and robustness to parametic uncertainties. The results demonstrated the vibration attenuation in the structure by controlling only the first modes and the increased damping in the bandwidth of interest. However, it is possible to occur spillover effects, because the design has not been done considering the dynamic uncertainties related with high frequencies modes. In this sense, the second technique uses the classical H. output feedback control, also solved by LMI approach, considering robustness to residual dynamic to overcome the problem found in the first test. The results are compared and discussed. The responses shown the robust performance of the system and the good reduction of the vibration level, without increase mass.
Resumo:
This paper presents the linear optimal control technique for reducing the chaotic movement of the micro-electro-mechanical Comb Drive system to a small periodic orbit. We analyze the non-linear dynamics in a micro-electro-mechanical Comb Drive and demonstrated that this model has a chaotic behavior. Chaos control problems consist of attempts to stabilize a chaotic system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. This technique is applied in analyzes the nonlinear dynamics in an MEMS Comb drive. The simulation results show the identification by linear optimal control is very effective.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
One of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest-natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper deals with an energy pumping that occurs in a (MEMS) Gyroscope nonlinear dynamical system, modeled with a proof mass constrained to move in a plane with two resonant modes, which are nominally orthogonal. The two modes are ideally coupled only by the rotation of the gyro about the plane's normal vector. We also developed a linear optimal control design for reducing the oscillatory movement of the nonlinear systems to a stable point.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
A model for optimal chemical control of leaf area damaged by fungi population - Parameter dependence
Resumo:
We present a model to study a fungi population submitted to chemical control, incorporating the fungicide application directly into the model. From that, we obtain an optimal control strategy that minimizes both the fungicide application (cost) and leaf area damaged by fungi population during the interval between the moment when the disease is detected (t = 0) and the time of harvest (t = t(f)). Initially, the parameters of the model are considered constant. Later, we consider the apparent infection rate depending on the time (and the temperature) and do some simulations to illustrate and to compare with the constant case.
Resumo:
Mathematical programming problems with equilibrium constraints (MPEC) are nonlinear programming problems where the constraints have a form that is analogous to first-order optimality conditions of constrained optimization. We prove that, under reasonable sufficient conditions, stationary points of the sum of squares of the constraints are feasible points of the MPEC. In usual formulations of MPEC all the feasible points are nonregular in the sense that they do not satisfy the Mangasarian-Fromovitz constraint qualification of nonlinear programming. Therefore, all the feasible points satisfy the classical Fritz-John necessary optimality conditions. In principle, this can cause serious difficulties for nonlinear programming algorithms applied to MPEC. However, we show that most feasible points do not satisfy a recently introduced stronger optimality condition for nonlinear programming. This is the reason why, in general, nonlinear programming algorithms are successful when applied to MPEC.
Resumo:
In this work, the linear and nonlinear feedback control techniques for chaotic systems were been considered. The optimal nonlinear control design problem has been resolved by using Dynamic Programming that reduced this problem to a solution of the Hamilton-Jacobi-Bellman equation. In present work the linear feedback control problem has been reformulated under optimal control theory viewpoint. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations for the Rössler system and the Duffing oscillator are provided to show the effectiveness of this method. Copyright © 2005 by ASME.
Resumo:
This paper, a micro-electro-mechanical systems (MEMS) with parametric uncertainties is considered. The non-linear dynamics in MEMS system is demonstrated with a chaotic behavior. We present the linear optimal control technique for reducing the chaotic movement of the micro-electromechanical system with parametric uncertainties to a small periodic orbit. The simulation results show the identification by linear optimal control is very effective. © 2013 Academic Publications, Ltd.
Resumo:
In this paper we study the behavior of a semi-active suspension witch external vibrations. The mathematical model is proposed coupled to a magneto rheological (MR) damper. The goal of this work is stabilize of the external vibration that affect the comfort and durability an vehicle, to control these vibrations we propose the combination of two control strategies, the optimal linear control and the magneto rheological (MR) damper. The optimal linear control is a linear feedback control problem for nonlinear systems, under the optimal control theory viewpoint We also developed the optimal linear control design with the scope in to reducing the external vibrating of the nonlinear systems in a stable point. Here, we discuss the conditions that allow us to the linear optimal control for this kind of non-linear system.