117 resultados para Numerical Computation
Resumo:
Benign and malignant thyroid tumors constitute a wide range of neoplasias showing recurrent chromosome abnormalities. In an attempt to characterize specific numerical chromosome abnormalities in thyroid tissues, We present here the findings from a study of archival samples depicted by 10 malignant tumors, 30 benign lesions, and 10 normal thyroid tissues. Fluorescence in situ hybridization was performed on noncultured samples using biotinylated centromere-specific probes for chromosomes 7, 10, and 17. Trisomy or tetrasomy 7 were present in 19 benign and in 7 malignant tumors. Trisomy 10 or 17 were observed in 18 adenomas or goiters and in 9 carcinomas, and monosomy 17 was seen in 2 carcinomas. Our findings suggest that such abnormalities are an in vivo phenomenon and may be important in the neoplastic proliferation of thyroid gland. (C) Elsevier B.V., 2000. All rights reserved.
Resumo:
We present a numerical scheme for solving the time-independent nonlinear Gross-Pitaevskii equation in two dimensions describing the Bose-Einstein condensate of trapped interacting neutral atoms at zero temperature. The trap potential is taken to be of the harmonic-oscillator type and the interaction both attractive and repulsive. The Gross-Pitaevskii equation is numerically integrated consistent with the correct boundary conditions at the origin and in the asymptotic region. Rapid convergence is obtained in all cases studied. In the attractive case there is a limit Co the maximum number of atoms in the condensate. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
We study certain stationary and time-evolution problems of trapped Bose-Einstein condensates using the numerical solution of the Gross-Pitaevskii (GP) equation with both spherical and axial symmetries. We consider time-evolution problems initiated by suddenly changing the interatomic scattering length or harmonic trapping potential in a stationary condensate. These changes introduce oscillations in the condensate which are studied in detail. We use a time iterative split-step method for the solution of the time-dependent GP equation, where all nonlinear and linear non-derivative terms are treated separately from the time propagation with the kinetic energy terms. Even for an arbitrarily strong nonlinear term this leads to extremely accurate and stable results after millions of time iterations of the original equation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work is concerned with non-equilibrium phenomena, with focus on the numerical simulation of the relaxation of non-conserved order parameters described by stochastic kinetic equations known as Ginzburg-Landau-Langevin (GLL) equations. We propose methods for solving numerically these type of equations, with additive and multiplicative noises. Illustrative applications of the methods are presented for different GLL equations, with emphasis on equations incorporating memory effects.
Resumo:
This work is concerned with the computation of incompressible axisymmetric and fall three-dimensional free-surface flows. In particular, the circular-hydraulic jump is simulated and compared with approximate analytic solutions. However, the principal thrust of this paper is to provide a real problem as a test bed for comparing the many existing convective approximations. Their performance is compared; SMART, HLPA and VONOS emerge as acceptable upwinding methods for this problem. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
This paper presents numerical simulations of incompressible fluid flows in the presence of a magnetic field at low magnetic Reynolds number. The equations governing the flow are the Navier-Stokes equations of fluid motion coupled with Maxwell's equations of electromagnetics. The study of fluid flows under the influence of a magnetic field and with no free electric charges or electric fields is known as magnetohydrodynamics. The magnetohydrodynamics approximation is considered for the formulation of the non-dimensional problem and for the characterization of similarity parameters. A finite-difference technique is used to discretize the equations. In particular, an extension of the generalized Peaceman and Rachford alternating-direction implicit (ADI) scheme for simulating two-dimensional fluid flows is presented. The discretized conservation equations are solved in stream function-vorticity formulation. We compare the ADI and generalized ADI schemes, and show that the latter is more efficient in simulating low Reynolds number and magnetic Reynolds number problems. Numerical results demonstrating the applicability of this technique are also presented. The simulation of incompressible magneto hydrodynamic fluid flows is illustrated by numerical solution for two-dimensional cases. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The aim of this paper is to apply methods from optimal control theory, and from the theory of dynamic systems to the mathematical modeling of biological pest control. The linear feedback control problem for nonlinear systems has been formulated in order to obtain the optimal pest control strategy only through the introduction of natural enemies. Asymptotic stability of the closed-loop nonlinear Kolmogorov system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. Numerical simulations for three possible scenarios of biological pest control based on the Lotka-Volterra models are provided to show the effectiveness of this method. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We numerically investigate the long-term dynamics of the Saturnian system by analyzing the Fourier spectra of ensembles of orbits taken around the current orbits of Mimas, Enceladus, Tethys, Rhea and Hyperion. We construct dynamical maps around the current position of these satellites in their respective phase spaces. The maps are the result of a great deal of numerical simulations where we adopt dense sets of initial conditions and different satellite configurations. Several structures associated to the current two-body mean-motion resonances, unstable regions associated to close approaches between the satellites, and three-body mean-motion resonances in the system, are identified in the map. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Due to the wide range of design possibilities, simple manufactured, low maintenance and low cost, cross-flow heat exchangers are extensively used in the petroleum, petrochemical, air conditioning, food storage, and others industries. In this paper a mathematical model for cross-flow heat exchangers with complex flow arrangements for determining epsilon -NTU relations is presented. The model is based on the tube element approach, according to which the heat exchanger outlet temperatures are obtained by discretizing the coil along the tube fluid path. In each cross section of the element, tube-side fluid temperature is assumed to be constant because the heat capacity rate ratio C*=Cmin/Cmax tends toward zero in the element. Thus temperature is controlled by effectiveness of a local element corresponding to an evaporator or a condenser-type element. The model is validated through comparison with theoretical algebraic relations for single-pass cross-flow arrangements with one or more rows. Very small relative errors are obtained showing the accuracy of the present model. epsilon -NTU curves for several complex circuit arrangements are presented. The model developed represents a useful research tool for theoretical and experimental studies on heat exchangers performance.
Resumo:
The thermal dependence of the zero-bias conductance for the single electron transistor is the target of two independent renormalization-group approaches, both based on the spin-degenerate Anderson impurity model. The first approach, an analytical derivation, maps the Kondo-regime conductance onto the universal conductance function for the particle-hole symmetric model. Linear, the mapping is parametrized by the Kondo temperature and the charge in the Kondo cloud. The second approach, a numerical renormalization-group computation of the conductance as a function the temperature and applied gate voltages offers a comprehensive view of zero-bias charge transport through the device. The first approach is exact in the Kondo regime; the second, essentially exact throughout the parametric space of the model. For illustrative purposes, conductance curves resulting from the two approaches are compared.
Resumo:
Este trabalho abordou o resfriamento rápido com ar forçado de morango via simulação numérica. Para tanto, foi empregado o modelo matemático que descreve o processo de transferência de calor, com base na lei de Fourier, escrito em coordenadas esféricas e simplificado para descrever o processo unidimensional. A resolução da equação expressa pelo modelo matemático deu-se por meio da implementação de um algoritmo, fundamentado no esquema explícito do método numérico das diferenças finitas, executado no ambiente de computação científica MATLAB 6.1. A validação do modelo matemático foi realizada a partir da comparação de dados teóricos com dados obtidos num experimento, no qual morangos foram resfriados com ar forçado. Os resultados mostraram que esse tipo de investigação para a determinação do coeficiente de transferência de calor por convecção é promissora como ferramenta no suporte à decisão do uso ou desenvolvimento de equipamentos na área de resfriamento rápido de frutos esféricos com ar forçado.