130 resultados para Non-dominated sorting genetic algorithms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last few years, crop rotation has gained attention due to its economic, environmental and social importance which explains why it can be highly beneficial for farmers. This paper presents a mathematical model for the Crop Rotation Problem (CRP) that was adapted from literature for this highly complex combinatorial problem. The CRP is devised to find a vegetable planting program that takes into account green fertilization restrictions, the set-aside period, planting restrictions for neighboring lots and for crop sequencing, demand constraints, while, at the same time, maximizing the profitability of the planted area. The main aim of this study is to develop a genetic algorithm and test it in a real context. The genetic algorithm involves a constructive heuristic to build the initial population and the operators of crossover, mutation, migration and elitism. The computational experiment was performed for a medium dimension real planting area with 16 lots, considering 29 crops of 10 different botanical families and a two-year planting rotation. Results showed that the algorithm determined feasible solutions in a reasonable computational time, thus proving its efficacy for dealing with this practical application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an application to traffic lights control in congested urban traffic, in real time, taking as input the position and route of the vehicles in the involved areas. This data is obtained from the communication between vehicles and infrastructure (V2I). Due to the great complexity of the possible combination of traffic lights and the short time to get a response, Genetic Algorithm was used to optimize this control. According to test results, the application can reduce the number of vehicles in congested areas, even with the entry of vehicles that previously were not being considered in these roads, such as parked vehicles. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper proposes a new hybrid multi-population genetic algorithm (HMPGA) as an approach to solve the multi-level capacitated lot sizing problem with backlogging. This method combines a multi-population based metaheuristic using fix-and-optimize heuristic and mathematical programming techniques. A total of four test sets from the MULTILSB (Multi-Item Lot-Sizing with Backlogging) library are solved and the results are compared with those reached by two other methods recently published. The results have shown that HMPGA had a better performance for most of the test sets solved, specially when longer computing time is given. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper solves the multi-level capacitated lot sizing problem with backlogging (MLCLSPB) combining a genetic algorithm with the solution of mixed-integer programming models and the improvement heuristic fix and optimize. This approach is evaluated over sets of benchmark instances and compared to methods from literature. Computational results indicate competitive results applying the proposed method when compared with other literature approaches. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper applies a genetic algorithm with hierarchically structured population to solve unconstrained optimization problems. The population has individuals distributed in several overlapping clusters, each one with a leader and a variable number of support individuals. The hierarchy establishes that leaders must be fitter than its supporters with the topological organization of the clusters following a tree. Computational tests evaluate different population structures, population sizes and crossover operators for better algorithm performance. A set of known benchmark test problems is solved and the results found are compared with those obtained from other methods described in the literature, namely, two genetic algorithms, a simulated annealing, a differential evolution and a particle swarm optimization. The results indicate that the method employed is capable of achieving better performance than the previous approaches in regard as the two criteria usually employed for comparisons: the number of function evaluations and rate of success. The method also has a superior performance if the number of problems solved is taken into account. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Set Covering Problem (SCP) plays an important role in Operational Research since it can be found as part of several real-world problems. In this work we report the use of a genetic algorithm to solve SCP. The algorithm starts with a population chosen by a randomized greedy algorithm. A new crossover operator and a new adaptive mutation operator were incorporated into the algorithm to intensify the search. Our algorithm was tested for a class of non-unicost SCP obtained from OR-Library without applying reduction techniques. The algorithms found good solutions in terms of quality and computational time. The results reveal that the proposed algorithm is able to find a high quality solution and is faster than recently published approaches algorithm is able to find a high quality solution and is faster than recently published approaches using the OR-Library.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a novel approach for mapping lightning processes using fuzzy logic. The estimation process is carried out using a fuzzy system based on Sugeno's architecture. Simulation results confirm that proposed approach can be efficiently used in these types of problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an efficient genetic algorithm (GA) is presented to solve the problem of multistage and coordinated transmission expansion planning. This is a mixed integer nonlinear programming problem, difficult for systems of medium and large size and high complexity. The GA presented has a set of specialized genetic operators and an efficient form of generation of the initial population that finds high quality suboptimal topologies for large size and high complexity systems. In these systems, multistage and coordinated planning present a lower investment than static planning. Tests results are shown in one medium complexity system and one large size high complexity system.