77 resultados para Nickel Ferrites. Combustion method. Sintering
Resumo:
Aim the aim of this study was to evaluate the efficacy of ultrasound in cleaning the surface of stainless steel and Ni-Ti endodontic instruments.Methodology Twenty nickel-titanium instruments (10 Quantec files and 10 Nitiflex) and 20 stainless steel K-files (10 Maillefer-Dentsply and 10 Moyco Union Broach) were removed from their original packages and evaluated using a scanning electron microscope. Scores were given for the presence of residues on the surface or the instruments. The instruments were then cleaned in an ultrasonic bath containing only distilled water or detergent solution for 15 min, and re-evaluated, using scanning electron microscopy.Results Before cleaning, a greater amount of metallic debris was observed on the nickel-titanium Quantec instruments (P < 0.05), when compared to those made of stainless steel. Statistical analysis showed that the use of ultrasound was effective for cleaning the instruments, regardless of the irrigating solution or the instruments type (P < 0.05).Conclusions the use of ultrasound proved to be an efficient method for the removal of metallic particles from the surface of stainless steel and Ni-Ti endodontic instruments.
Resumo:
ZrTiO4 (ZT), obtained by the Pechini method, was used as precursor for obtaining PLZT (lead lanthanum zirconium titanate). An aqueous solution of oxalic acid was prepared with particles of ZT, Pb(NO3)(2) and La2O3. After the PbC2O4 and La2O3 precipitate on ZT particles, the materials were calcined and X-ray diffraction (XRD) showed the cubic phase of PLZT. This material was sintered, in two steps, and a density of about 8.0 g/cm(3) was obtained. After the second sintering the XRD pattern showed the occurrence of tetragonal and rhombohedral phases. This was caused by a stoichiometric deviation and the material showed a high optical transparency. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
A series of powdered cobalt ferrites, CoxFe3-xO4 with 0.66 <= x< 1.00 containing different amounts of Fe-II, were synthesized by a mild procedure, and their Fe and Co site occupancies and structural characteristics were explored using X-ray anomalous scattering and the Rietveld refinement method. The dissolution kinetics, measured in 0.1 M oxalic acid aqueous solution at 70 degrees C, indicate in all cases the operation of a contracting volume rate law. The specific rates increased with the Fell content following approximately a second-order polynomial expression. This result suggests that the transfer of Fe-III controls the dissolution rate, and that the leaching of a first layer of ions Co-II and Fe-II leaves exposed a surface enriched in slower dissolving octahedral Fe-III ions. Within this model, inner vicinal lattice Fe-II accelerates the rate of Fe-III transfer via internal electron hopping. A chain mechanism, involving successive electron transfers, fits the data very well. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
PLZT ceramics belong to one of the very important groups of functional materials that make a basis for the production of a large range of electronic devices. The microstructure and properties of ceramics depend on the powder preparation and thermal processing conditions. Various techniques have been used to obtain chemically homogeneous and fine starting powders. PLZT powders have been prepared by two different production routes: by a modified Pechini method, using a polymeric precursor method (PMM) and by a partial oxalate method. A two-step sintering process, including a hot pressing, was carried out at 1100 and 1200degreesC Distinct phases obtained during the sintering process have been investigated by SEM and EDS techniques and dielectric properties such as permittivity and dielectric loss were measured in a frequency range from 1 to 20 kHz.. A significant difference in microstructure and dielectric properties, depending on powder origin and sintering procedure, has been noticed.
Resumo:
Pure and niobium doped bismuth titanate ceramics (Bi4Ti3-xNbxO12 (BTN)), with x ranging from 0 to 0.4 were prepared by the polymeric precursor method. X-ray diffraction showed no secondary phases. Increasing niobium content leads to more resistive ceramics. The shape and size of the grains are strongly influenced by the niobiurn added to the system. The dielectric constant is not influenced by the niobium addition while hysteresis loops are significantly narrowed. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
This article presents a thermoeconomic analysis of cogeneration plants, applied as a rational technique to produce electric power and saturated steam. The aim of this new methodology is the minimum Exergetic Production Cost (EPC), based on the Second Law of Thermodynamics. The variables selected for the optimization are the pressure and the temperature of the steam leaving the boiler in the case of using steam turbine, and the pressure ratio, turbine exhaust temperature and mass flow in the case of using gas turbines. The equations for calculating the capital costs of the components and products are formulated as a function of these decision variables. An application of the method using real data of a multinational chemical industry located in São Paulo state is presented. The conditions which establish the minimum cost are presented as final output. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Substitutions of Ti and Cu in ZrO2.MgO (Z), cause transformation from monoclinic (m) to cubic (c) and tetragonal (t). According to the vacancy model and solid Solution formation models, neither CuO nor TiO2 cause zirconia stabilization, which derives front other phenomena. Data analysis by TMA using the CRH (constant rate of heating) method shows a solid state reaction of ZrO2.MgO.TiO2 (Z.TiO2) demonstrating a dominant mechanism of volume diffusion (n = 1). However, the sintering of ZrO2.MgO.CuO (Z.CuO) shows a viscous flow mechanism (n = 0), a similar phenomena to that of by sintering of glass. Transformations, such as: CuO to Cu2O at 1000 degreesC, ZrO2 (m) to ZrO2 (t) at 1100 degreesC and Cu2O (s) to Cu2O (l) at 1230 degreesC cause successive rearrangements of microstructure inside of region I (sintering process) and lead to interpretation errors when the Bannister equation is used. (C) 2003 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
PLZT(9/65/35) obtained by association between the Pechini method (ZT) and partial oxalate (PLZT) was prepared. The stoichiometric phase and monophasic (cubic) PLZT obtained by calcination did not occur after sintering. The sintering process, by using two stages, caused a liquid phase formation due to a PbO excess (5 and 10 wt%). Samples with high density (similar to 8 g/cm(3)) and optical transparency(similar to 12%) were obtained. However, an equilibrium between the excess of PbO of sample/atmosphere PbO leads to a segregated PbO phase on the boundaries of the microstructure. A diffusion of Zr, Ti and La ions from PLZT to PbO phase promoted a stoichiometric deviation of the matrix and modified the optical and dielectric characteristics. (C) 2000 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
Resumo:
Zirconia-ceria powders with ceria concentration varying from 0 to 12 mol% were synthesized using a polymeric precursor route based on the Pechini process. Powder characteristics were evaluated with regard to the crystallite size, BET surface area, phase distribution, nitrogen adsorption/desorption behavior, and agglomeration state. Sintering was studied considering the shrinkage rate, densification, grain size, and phase evolution. It was demonstrated that the synthesis method is effective to prepare nanosized powders of tetragonal zirconia single-phase. Sinterability mainly depended on the agglomeration state of powders and the monoclinic phase content, fully tetragonal zirconia ceramic, with grain size of 2.4 mu m, was obtained after addition of at least 9 mol% ceria and sintering at 1500 degrees C for 4 h. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Composites containing a matrix of nanometric Ce-stabilized zirconia with an addition of micrometric monoclinic zirconia were processed by slip casting and sintered at a relatively low temperature. The ratio between nanometric and micrometric particles was determined according to the viscosity of the suspensions and the final density of the pellets. An optimum amount of micrometric particles was necessary to achieve improved suspension dispersion and higher pellet density. The amount of deflocculant in the suspensions containing the mixture of micrometric and nanometric particles was optimized by viscosity measurements. The pellets were characterized by dilatometry, Hg porosimetry, density measurement (the Archimedes method) and scanning electron microscopy. Despite the low green density obtained (35-38% of the theoretical density), densities as high as 97.5% were achieved after sintering. (C) 2001 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
Resumo:
Zirconia-ceria powders with 12 mol % of CeO2 doped with 0.3 mol% of iron, copper, manganese and nickel oxides were synthesized by the conventional mixed oxide method. These systems were investigated with regard to the sinterability and electrical properties. Sintering was studied considering the shrinkage rate, densification, grain size, and phase evolution. Small amount of dopant such as iron reduces sintering temperature by over 150degreesC and more than 98% of tetragonal phase was retained at room temperature in samples sintered at 1450degreesC against 1600degreesC to stabilize the tetragonal phase on pure ZrO2-CeO2 system. The electrical conductivity was measured using impedance spectroscopy and the results were reported. The activation energy values calculated from the Arrhenius's plots in the temperature range of 350-700degreesC for intragrain conductivities are 1.04 eV.
Resumo:
ZrO2 powder was coated with Al2O3 precursor generated by a polymeric precursor method in aqueous solution. The system of nanocoated particles formed a core shell-like structure in which the particle is the core and the nanocoating (additive) is the shell. A new approach is reported in order to control the superficial mass transport and the exaggerated grain growth during the sintering of zirconia powder. Transmission electron microscopy (TEM) observations clearly showed the formation of an alumina layer on the surface of the zirconia particles. This layer modifies the sintering process and retards the maximum shrinkage temperature of the pure zirconia.
Resumo:
The effect of heating rate on the sintering of agglomerated NaNbO3 powders, processed by the polymeric precursors method, was studied. The results showed that the presence of agglomerated powder leads to a heterogeneous microstructure, with bimodal grain size distribution, after sintering. Using a high heating rate, the sintering of agglomerated particles was inhibits, leading to a homogeneous microstructure, with single grain size distribution. (C) 1998 Kluwer Academic Publishers.
Resumo:
A mercury-free electrode chemically modified with carbon paste containing dimethylglyoxime was used for determination of nickel in fuel ethanol. The instrumental parameters and composition of the modified paste were optimized. The analytical curve for nickel determination from 5.0 x 10(-9) to 5.0 x10(-7) mol(-1) was obtained using 25 min of accumulation time. The detection limit and amperometric sensitivity obtained for this method were 2.7 x 10 mol(-1) and 5.2 x 10(8) mu A mol(-1) L, respectively. The values for nickel concentration in four commercial samples of fuel ethanol were obtained in the range of 1.1 x 10(-8) to 6.9 x 10(-8) mol(-1). A comparison to graphite furnace atomic absorption spectrometry (GFAAS) was performed for nickel determination in commercial samples of ethanol.
Resumo:
In this work, zirconium titanate doped with 0. 1, 0.2, and 0.4 mole% of tin, chromium and vanadium was synthesized by the polymeric precursors method and characterized by thermal analysis (TG/DTA), X-ray diffraction (XRD), nitrogen adsorption and scanning electronic microscopy (SEM). The powder presented two mass losses attributed to the exit of water and to the pyrolysis of the organic material. The surface area reduction observed from 500 degrees C indicates the beginning of the sintering process. All the dopants led to changes in the lattice parameters and to the decrease of both crystallite size and particle size. (c) 2005 Elsevier B.V. All rights reserved.