95 resultados para NEUTRAL DONORS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Depending on the composition, the mixture of surfactant, oil and water, may form supramolecular aggregates with different structures which can significantly influence the drug release. In this work several microemulsion (ME) systems containing soya phosphatidylcholine (SPC) and eumulgin HRE40 (TM) (EU) as surfactant, cholesterol (O) as oil phase, and ultra-pure water as an aqueous phase were studied. MEs with and without the antitumoral drug doxorubicin (DOX) were prepared. The microstructures of the systems were characterized by photon correlation spectroscopy, rheological behavior, polarized light microscopy, small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD). The results reveal that the diameter of the oil droplets was dependent on the surfactant (S) amount added to formulations. The apparent viscosity was dependent on the O/S ratio. High O/S ratio leads to the crystallization of cholesterol polymorphs phases which restricts the mobility of the DOX molecules into the ME structure. Droplets with short-range spatial correlation were formed from the ME with the low O/S ratio. The increase of the cholesterol fraction in the O/S mixture leads to the formation of ordered structures with lamellar arrangements. These different structural organizations directly influenced the drug release profiles. The in vitro release assay showed that the increase of the O/S ratio in the formulations inhibited the constant rate of DOX release. Since the DOX release ratio was directly dependent on the ratio of O/S following an exponential decay profile, this feature can be used to control the DOX release from the ME formulations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The relationship between grain-boundary capacitance and extrinsic shallow donors caused by Nb addition to SnO2 center dot COO binary polycrystalline system has been investigated by means of combined techniques such as I-V characteristic response, complex impedance and capacitance analysis and electrostatic force microscopy. The estimated role of the Nb doping is to increase the concentration of shallow donors that are capable of enhancing the electronic donation to grain-boundary acceptors. This effect leads to the formation of potential barriers at grain boundaries with a simultaneous increase of grain-boundary capacitance and non-Ohmic features of the polycrystalline device doped with Nb atoms.
Resumo:
Progression of chronic hepatitis C is known to be associated with some factors, but influence of HCV genotypes is still controversial. Association between HCV genotypes and other risk factors was examined to determine which factors are associated with progression of infection. One hundred consecutive anti-HCV positive volunteer blood donors were evaluated for several risk factors, examined for HCV genotypes, and submitted to hepatic biopsy and biochemical exams.HCV genotyping were carried out in 89 patients and hepatic biopsy in 78. Transmission routes were found to be illicit intravenous drug use (26%), Gluconergan® use in a non-safe manner (48%) and blood transfusion (15%). HCV genotype was 1 in 45%, 3 in 40%, and it was not associated with the stage of fibrosis or with inflammatory activity. There was no significant association of factors related to infection, chronic alcohol use, or duration of illness, with progression of the lesion. There was a significant association of aminotransferase levels and the fibrosis stage. Univariate analysis showed that the age at contamination, patient's age, GT-gamma, and aminotransferase levels over three times the upper normal limits, were associated with fibrosis stages 2 to 4. Multivariate analysis detected age (odds ratio=1.19), and GT-gamma (odds ratio=2.02) as independent factors.
Resumo:
Using the hyperspherical adiabatic approach in a coupled-channel calculation, we present precise binding energies of excitons trapped by impurity donors in semiconductors within the effective-mass approximation. Energies for such three-body systems are presented as a function of the relative electron-hole mass sigma in the range 1 less than or equal to1/sigma less than or equal to6, where the Born-Oppenheimer approach is not efficiently applicable. The hyperspherical approach leads to precise energies using the intuitive picture of potential curves and nonadiabatic couplings in an ab initio procedure. We also present an estimation for a critical value of sigma (sigma (crit)) for which no bound state can be found. Comparisons are given with results of prior work by other authors.
Resumo:
We consider flavor changing neutral current effects coming from the Z' exchange in 3-3-1 models. We show that the mass of this extra neutral vector boson may be less than 2 TeV and discuss the problem of quark family discrimination.
Resumo:
Several neutral solutes, ranging in size from methanol to a tetrasaccharide, stachyose, are shown to stabilize the left-handed Z form of the methylated polynucleotide poly(dG-m(5)dC). The action of these solutes is consistent with an osmotic stress, that is, with their effect on water chemical potentials coupled to a difference in the number of-associated water molecules between the B and Z conformations. The apparent difference in hydration between the two forms is, however, dependent on the particular solute used to probe the reaction. The effect of solutes is not consistent either with a direct binding of solute or with an indirect effect on electrostatics or ion binding through changes in the solution dielectric constant. The interplay of NaCl and neutral solute in modulating the B-Z transition suggests that salt also could be stabilizing the Z form through an osmotic stress.