88 resultados para Modelos vetoriais lineares generalizados
Resumo:
Pós-graduação em Saúde Coletiva - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Amphibian populations worldwide have been suffering declines generated by habitat degradation, loss, fragmentation and habitat split. With habitat loss and fragmentation in the landscape comes habitat split, which is the separation between the adult anuran habitat and breeding sites, forcing individuals to move through matrix during breeding seasons. Thus, habitat split increases the chance of extinction of amphibians with aquatic larval development and acts as a filter in the selection of species having great influence on species richness and community structure. The use of functional diversity allows us to consider the identity and characteristics of each species to understand the effects of fragmentation processes. The objective of this study was to estimate the effects of habitat split, as well as habitat loss in the landscape, on amphibians functional diversity (FD) and species richness (S). We selected 26 landscapes from a database with anuran surveys of Brazilian Atlantic Forest. For each landscape we calculated DF, S and landscape metrics at multiple scales. To calculate the DF we considered traits that influenced species use and persistence in the landscape. We refined maps of forest remnants and water bodies for metrics calculation. To relate DF and S (response variables) to landscape variables (explanatory variables), we used a model selection approach, fitting generalized linear models (GLMS) and making your selection with AICc. We compared the effect of model absence and models with habitat split, habitat amount and habitat connectivity effects, as well as their interaction. The most plausible models for S were the sum and interaction between habitat split in 7.5 km scale. For anurans with terrestrial development, habitat amount was the only plausible explanatory variable, in the 5 km scale. For anurans with aquatic larvae habitat amount in larger scales and the addition of habitat amount and habitat split were plausible...
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Física - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The knowledge of how animals deposited chemical components as water, protein, fat and ash in the carcass is importance for the formulation of a balanced diet, allowing maximum performance with a low environmental impact. So, the study was carried out to evaluate the influence of different tilapia strains (Chitralada, Commercial, Red and Universidade Federal de Lavras [UFLA]) on the deposition of bodily chemical components in the carcass. The bodily components analyzed were water, protein, fat and ash. For the determination of the bodily chemical deposition curves by age, the exponential, Brody, logistic, Gompertz and von Bertalanffy models were adjusted. The Commercial and UFLA strains deposited water at a faster speed (P<0.05) compared with the remaining strains. As for protein, the Red strain had a lower estimated maturity weight (49.37 g), and was more precocious (202 days) with regard to maximum deposition in comparison to the other strains (Chitralada, UFLA and Commercial) in which there was an estimated maturity weight of 231.5 g and maximum depositionfor 337 days. There were no differences (P>0.05) for the logistic model parameter between Red, UFLA and Commercial strains for fat, which presented a maximum fat deposition (0.23 g) at 310 days of age. Regarding ash deposition, the Commercial strain presented a higher maximum deposition (0.10 g) at 337 days, occurring later than the other strains that presented maximum deposition (0.033g) at 254 days of age. Thus, it was concluded that the genetic strains evaluated differ in chemical deposition curves of water, protein, fat and ash.