167 resultados para Linear Codes over Finite Fields
Stochastic stability for Markovian jump linear systems associated with a finite number of jump times
Resumo:
This paper deals with a stochastic stability concept for discrete-time Markovian jump linear systems. The random jump parameter is associated to changes between the system operation modes due to failures or repairs, which can be well described by an underlying finite-state Markov chain. In the model studied, a fixed number of failures or repairs is allowed, after which, the system is brought to a halt for maintenance or for replacement. The usual concepts of stochastic stability are related to pure infinite horizon problems, and are not appropriate in this scenario. A new stability concept is introduced, named stochastic tau-stability that is tailored to the present setting. Necessary and sufficient conditions to ensure the stochastic tau-stability are provided, and the almost sure stability concept associated with this class of processes is also addressed. The paper also develops equivalences among second order concepts that parallels the results for infinite horizon problems. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A procedure to model optical diffused-channel waveguides is presented in this work. The dielectric waveguides present anisotropic refractive indexes which are calculated from the proton concentration. The proton concentration inside the channel is calculated by the anisotropic 2D-linear diffusion equation and converted to the refractive indexes using mathematical relations obtained from experimental data, the arbitrary refractive index profile is modeled by a. nodal expansion in the base functions. The TE and TM-like propagation properties (effective index) and the electromagnetic fields for well-annealed proton-exchanged (APE) LiNbO3 waveguides are computed by the finite element method.
Resumo:
We continue our discussion of the q-state Potts models for q less than or equal to 4, in the scaling regimes close to their critical and tricritical points. In a previous paper, the spectrum and full S-matrix of the models on an infinite line were elucidated; here, we consider finite-size behaviour. TBA equations are proposed for all cases related to phi(21) and phi(12) perturbations of unitary minimal models. These are subjected to a variety of checks in the ultraviolet and infrared limits, and compared with results from a recently-proposed non-linear integral equation. A non-linear integral equation is also used to study the flows from tricritical to critical models, over the full range of q. Our results should also be of relevance to the study of the off-critical dilute A models in regimes 1 and 2. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose - This paper proposes an interpolating approach of the element-free Galerkin method (EFGM) coupled with a modified truncation scheme for solving Poisson's boundary value problems in domains involving material non-homogeneities. The suitability and efficiency of the proposed implementation are evaluated for a given set of test cases of electrostatic field in domains involving different material interfaces.Design/methodology/approach - the authors combined an interpolating approximation with a modified domain truncation scheme, which avoids additional techniques for enforcing the Dirichlet boundary conditions and for dealing with material interfaces usually employed in meshfree formulations.Findings - the local electric potential and field distributions were correctly described as well as the global quantities like the total potency and resistance. Since, the treatment of the material interfaces becomes practically the same for both the finite element method (FEM) and the proposed EFGM, FEM-oriented programs can, thus, be easily extended to provide EFGM approximations.Research limitations/implications - the robustness of the proposed formulation became evident from the error analyses of the local and global variables, including in the case of high-material discontinuity.Practical implications - the proposed approach has shown to be as robust as linear FEM. Thus, it becomes an attractive alternative, also because it avoids the use of additional techniques to deal with boundary/interface conditions commonly employed in meshfree formulations.Originality/value - This paper reintroduces the domain truncation in the EFGM context, but by using a set of interpolating shape functions the authors avoided the use of Lagrange multipliers as well Mathematics in Engineering high-material discontinuity.
Resumo:
The use of master actions to prove duality at quantum level becomes cumbersome if one of the dual fields interacts nonlinearly with other fields. This is the case of the theory considered here consisting of U(1) scalar fields coupled to a self-dual field through a linear and a quadratic term in the self-dual field. Integrating perturbatively over the scalar fields and deriving effective actions for the self-dual and the gauge field we are able to consistently neglect awkward extra terms generated via master action and establish quantum duality up to cubic terms in the coupling constant. The duality holds for the partition function and some correlation functions. The absence of ghosts imposes restrictions on the coupling with the scalar fields.
Resumo:
This paper presents a viscous three-dimensional simulations coupling Euler and boundary layer codes for calculating flows over arbitrary surfaces. The governing equations are written in a general non orthogonal coordinate system. The Levy-Lees transformation generalized to three-dimensional flows is utilized. The inviscid properties are obtained from the Euler equations using the Beam and Warming implicit approximate factorization scheme. The resulting equations are discretized and approximated by a two-point fmitedifference numerical scheme. The code developed is validated and applied to the simulation of the flowfield over aerospace vehicle configurations. The results present good correlation with the available data.
Resumo:
A construction technique of finite point constellations in n-dimensional spaces from ideals in rings of algebraic integers is described. An algorithm is presented to find constellations with minimum average energy from a given lattice. For comparison, a numerical table of lattice constellations and group codes is computed for spaces of dimension two, three, and four. © 2001.
Resumo:
Background: Data on stress distribution in tooth-restoration interface with different ceramic restorative materials are limited. The aim of this chapter was to assess the stress distribution in the interface of ceramic restorations with laminate veneer or full-coverage crown with two different materials (lithium dissilicate and densely sintered aluminum oxide) under different loading areas through finite element analysis. Materials and Methods: Six two-dimensional finite element models were fabricated with different restorations on natural tooth: laminate veneer (IPS Empress, IPS Empress Esthetic and Procera AllCeram) or full-coverage crown (IPS e.max Press and Procera AllCeram). Two different loading areas (L) (50N) were also determined: palatal surface at 45° in relation to the long axis of tooth (L1) and perpendicular to the incisal edge (L2). A model with higid natural tooth was used as control. von Mises equivalent stress (σ vM) and maximum principal stress (σ max) were obtained on Ansys software. Results: The presence of ceramic restoration increased σ vM and σ max in the adhesive interface, mainly for the aluminum oxide (Procera AllCeram system) restorations. The full-coverage crowns generated higher stress in the adhesive interface under L1 while the same result was observed for the laminate veneers under L2. Conclusions: Lithium dissilicate and densely sintered aluminum oxide restorations exhibit different behavior due to different mechanical properties and loading conditions. © 2011 Nova Science Publishers, Inc.
Resumo:
In this work, we propose an innovative methodology to extend the construction of minimum and non-minimum delay perfect codes as a subset of cyclic division algebras over ℚ(ζ3), where the signal constellations are isomorphic to the hexagonal An 2 -rotated lattice, for any channel of any dimension n such that gcd{n, 3) = 1.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Let M2n+1 be a C(CPn) -singular manifold. We study functions and vector fields with isolated singularities on M2n+1. A C(CPn) -singular manifold is obtained from a smooth manifold M2n+1 with boundary in the form of a disjoint union of complex projective spaces CPn boolean OR CPn boolean OR ... boolean OR CPn with subsequent capture of a cone over each component of the boundary. Let M2n+1 be a compact C(CPn) -singular manifold with k singular points. The Euler characteristic of M2n+1 is equal to chi(M2n+1) = k(1 - n)/2. Let M2n+1 be a C(CPn)-singular manifold with singular points m(1), ..., m(k). Suppose that, on M2n+1, there exists an almost smooth vector field V (x) with finite number of zeros m(1), ..., m(k), x(1), ..., x(1). Then chi(M2n+1) = Sigma(l)(i=1) ind(x(i)) + Sigma(k)(i=1) ind(m(i)).