176 resultados para Hipnotics: propofol
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Resultados satisfatórios têm sido relatados com o emprego da eletroacupuntura (EA), como adjuvante da anestesia geral no homem e em animais. O objetivo do trabalho é avaliar a dose de indução anestésica do propofol em função do emprego da eletroacupuntura em cães. Foram utilizados 20 cães, distribuídos em dois grupos de igual número, GEA: foi realizada EA nos acupontos estômago 36 (E36), vesícula biliar 34 (VB 34) e baço-pâncreas 6 (BP 6), bilateralmente, durante 45 minutos antes da indução anestésica e GC: não foi realizada EA antes da indução anestésica. Os animais foram tranqüilizados com acepromazina intravenosa (0,05mg.kg-1) 60 minutos antes da indução anestésica, realizada com propofol na taxa de 0,2ml.kg.min-1. A análise estatística foi realizada por test t não pareado(P<0,05). Os valores foram apresentados em média±SD. Não houve diferença significativa na dose do propofol entre os grupos (5±2mg kg-1 no GC e 5,2±1,6mg kg-1 no GEA), sugerindo que a eletroacupuntura não potencializou o efeito depressor do propofol sobre o sistema nervoso central.
Resumo:
Objective-To evaluate the effects of 2 remifentanil infusion regimens on cardiovascular function and responses to nociceptive stimulation in propofol-anesthetized cats.Animals-8 adult cats.Procedures-On 2 occasions, cats received acepromazine followed by propofol (6 mg/kg then 0.3 mg/kg/min, IV) and a constant rate infusion (CRI) of remifentanil (0.2 or 0.3 mu g/kg/min,IV) for 90 minutes and underwent mechanical ventilation (phase I). After recording physiologic variables, an electrical stimulus (50 V; 50 Hz; 10 milliseconds) was applied to a forelimb to assess motor responses to nociceptive stimulation. After an interval (>= 10 days), the same cats were anesthetized via administration of acepromazine and a similar infusion regimen of propofol; the remifentanil infusion rate adjustments that were required to inhibit cardiovascular responses to ovariohysterectomy were recorded (phase II).Results-In phase I, heart rate and arterial pressure did not differ between remifentanil-treated groups. From 30 to 90 minutes, cats receiving 0.3 mu g of remifentanil/kg/min had no response to noxious stimulation. Purposeful movement was detected more frequently in cats receiving 0.2 mu g of remifentanil/kg/min. In phase II, the highest dosage (mean +/- SEM) of remifentanil that prevented cardiovascular responses was 0.23 +/- 0.01 mu g/kg/min. For all experiments, mean time from infusion cessation until standing ranged from 115 to 140 minutes.Conclusions and Clinical Relevance-Although the lower infusion rate of remifentanil allowed ovariohysterectomy to be performed, a CRI of 0.3 mu g/kg/min was necessary to prevent motor response to electrical stimulation in propofol-anesthetized cats. Recovery from anesthesia was prolonged with this technique.
Resumo:
The effects of premedicating cats with saline, xylazine or medetomidine before anaesthetising them with propofol-sevoflurane were compared. Twenty-four cats were randomly assigned to three groups of eight to receive either 0.25 ml of saline, 0.50 mg/kg of xylazine or 0.02 mg/kg of medetomidine intravenously, and anaesthesia was induced with propofol and maintained with sevoflurane. Medetomidine produced a greater reduction in the induction dose of propofol and fewer adverse postoperative effects than saline or xylazine. Hypoxaemia was observed after induction with propofol in the cats premedicated with saline and xylazine, but not in the cats given medetomidine. The cats treated with medetomidine and xylazine developed profound bradycardia. The blood pressure of the cats premedicated with saline and xylazine decreased, but the blood pressure of the cats premedicated with medetomidine was maintained. The cats premedicated with saline took longer to recover from anaesthesia than the other two groups.
Resumo:
Little research has been done with propofol in relation to renal function. The aim of this study was to evaluate the effects of the continuous infusion of propofol on renal function in dogs. Sixteen dogs, previously anesthetized with pentobarbital sodium (30 mg.kg-1) for surgical preparation, catheterism and monitoring, were studied. The dogs were mechanically ventilated with air and received alcuronium (0.2 mg.kg-1 in bolus and 0.06 mg.kg-1 - maintenance). The following parameters were studied: heart rate (HR), mean arterial pressure (MAP), central venous pressure (CVP), aortic blood flow (A(o)BF - by electromagnetic flowmeter installed in the ascending aortic), aortic vascular resistance index (A(o)VRI), renal plasma flow (ERPF - by para-aminohipurate clearance), glomerular filtration rate (GFR - by creatinine clearance), effective renal blood flow (ERBF = ERPF/1 - hematocrit), urinary volume (UV), renal vascular resistance (RVR = MAP.80/ERBF.10-3), urinary sodium excretion (UE(Na)), fractionated sodium excretion (FE(Na)), osmolar clearance (C(osm)) and free water clearance (C(H2O)). These parameters were studied at 15 (M1), 30 (M2), 45 (M3) and 60 (M4) min after beginning pentobarbital sodium infusion (5 mg.kg-1.h-1). The dogs were allocated into two groups of eight animals each: G1 (control-pentobarbital sodium) and G2 (propofol). In G1, pentobarbital was given at the four times studied. G2 dogs received the same treatment as G1 dogs at M1 and M2; infusion of pentobarbital was substituted by propofol (3 mg.kg-1 bolus, followed by 12 mg.kg-1.h-1 continuous infusion) at M3 and M4. Profile Analysis was used to analyze the results statistically. In G1 (pentobarbital), there was a significant increase in RVR (M1 < M4) and a decrease in ERPF and ERBF (M1 > M4). In G2 (propofol) there was only a significant increase in A(o)BF (M1 < M2 = M3). In comparison among groups, these was a significant alteration of FE(Na) at M3 (pentobarbital > propofol). It was observed that the continuous infusion of propofol in dogs, at the given doses, did not alter the basic variables of renal function and hemodynamics studied. We concluded that propofol can be one of the drugs of choice to provide base anesthesia in studies of renal function in dogs.
Resumo:
The effects of propofol on intraocular pressure (IOP) and end tidal CO2 (ETCO2) were studied because an elevation in the latter may alter IOP. Twenty dogs were divided into two groups (G1 and G2). G1 dogs were induced with 10 mg/kg (IV) of propofol followed by a 0.4 mg/kg/min continuous infusion of the same agent diluted in a 0.2% dextrose solution for 1 h. G(CAPS) 2 dogs served as the control group, where only dextrose solution was administered, under the same time intervals as in G1. Applanation tonometry (Tono-Pen) was used to determine IOP and ETCO2 as a method to determine partial CO2 pressure. Measurements were taken every 15 min for 1 h, with M1 occurring immediately before IV administration. IOP and ETCO2 were not statistically significant in either groups. Based on the results, it may be concluded that propofol does not alter IOP and ETCO2.
Resumo:
The effects of premedicating cats with saline, xylazine or medetomidine before anaesthetising them with propofol-sevoflurane were compared. Twenty-four cats were randomly assigned to three groups of eight to receive either 0.25 ml of saline, 0.50 mg/kg of xylazine or 0.02 mg/kg of medetomidine intravenously, and anaesthesia was induced with propofol and maintained with sevoflurane. Medetomidine produced a greater reduction in the induction dose of propofol and fewer adverse postoperative effects than saline or xylazine. Hypoxaemia was observed after induction with propofol in the cats premedicated with saline and xylazine, but not in the cats given medetomidine. The cats treated with medetomidine and xylazine developed profound bradycardia. The blood pressure of the cats premedicated with saline and xylazine decreased, but the blood pressure of the cats premedicated with medetomidine was maintained. The cats premedicated with saline took longer to recover from anaesthesia than the other two groups.
Resumo:
The effects of several inspired oxygen fractions (FiO 2) on the respiratory dynamics in spontaneously breathing dogs submitted to continuous infusion of propofol were evaluated. Eight adult mongrel dogs were used. Each animal underwent five anesthesias, in each procedure the patient was allowed to breath a different FiO 2, thereby resulting in five groups, namely: G100 (FiO 2 = 1), G80 (FiO 2 = 0.8), G60 (FiO 2 =0.6), G40 (FiO 2 = 0.4), and G20 (FiO 2 = 0.21). To induce anesthesia, propofol was given until the animals allowed orotracheal intubation, followed by immediate continuous infusion of drug. The initial measurement (M0) was recorded thirty minutes after the infusion of propofol has begun. Additional recordings were performed at 15 minute intervals for 60 minutes (M15, M30, M45 and M60). Numeric data were submitted to Analysis of Variance followed by Tukey Test (p<0.05). We recorded significantly lower values of SpO 2 and SaO 2 at G20, whereas PaO 2 varied according to the changes in oxygen. Regarding PaCO 2, the mean of G100 was greater than G20 at M30. However, spontaneously breathing dogs anesthetized with propofol at the rate of 0.7mg/kg/min should not be provided with 100%, 80%, and 21% oxygen owing to the significant compromise of respiratory system.
Resumo:
Objective and design: The effects of anesthetics on cytokine release in patients without comorbidities who undergo minor surgery are not well defined. We compared inflammatory cytokine profiles in adult patients undergoing minimally invasive surgery who received isoflurane or propofol anesthesia. Methods: Thirty-four patients without comorbidities undergoing minor surgery were randomly assigned to receive an inhaled anesthetic (isoflurane; n = 16) or an intravenous anesthetic (propofol; n = 18). Blood samples were drawn before premedication and anesthesia (T1), 120 min after anesthesia induction (T2), and on the first post-operative day (T3). Plasma concentrations of interleukins (IL-) 1β, 6, 8, 10 and 12 and tumor necrosis factor (TNF)-α were measured using flow cytometry. Results: The pro-inflammatory cytokine IL-6 was increased in the isoflurane group at T2 and T3 compared to T1 (P < 0.01). In the propofol group, IL-6 and IL-8 were significantly increased at T3 compared to T1. However, there were no significant differences in cytokine concentrations between the isoflurane and propofol groups. Conclusion: An inflammatory response occurred earlier in patients who received an inhaled agent compared with an intravenous anesthetic, but no differences in plasma cytokine profiles were evident between isoflurane and propofol anesthesia in patients without comorbidities undergoing minimally invasive surgeries. © 2013 Springer Basel.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)