42 resultados para Heat and Mass Transfer
Resumo:
Red, green, and blue emission through frequency upconversion and energy-transfer processes in tellurite glasses doped with Tm3+ and Er3+ excited at 1.064 mum is investigated. The Tm3+/Er3+-codoped samples produced intense upconversion emission signals at around 480, 530, 550 and 660 nm. The 480 nm blue emission was originated from the (1)G(4)-->H-3(6) transition of the Tm3+ ions excited by a multiphoton stepwise phonon-assisted excited-state absorption process. The 5 30, 5 50 nm green and 660 mn red upconversion luminescences were identified as originating from the H-2(11/2), S-4(3/2) --> I-4(15/2) and F-4(9/2) --> I-4(15/2) transitions of the Er3+ ions, respectively, populated via efficient cross-relaxation processes and excited-state absorption. White light generation employing a single infrared excitation source is also examined. (C) 2003 Elsevier B.V. (USA). All rights reserved.
Resumo:
The accurate determination of thermophysical properties of milk is very important for design, simulation, optimization, and control of food processing such as evaporation, heat exchanging, spray drying, and so forth. Generally, polynomial methods are used for prediction of these properties based on empirical correlation to experimental data. Artificial neural networks are better Suited for processing noisy and extensive knowledge indexing. This article proposed the application of neural networks for prediction of specific heat, thermal conductivity, and density of milk with temperature ranged from 2.0 to 71.0degreesC, 72.0 to 92.0% of water content (w/w), and 1.350 to 7.822% of fat content (w/w). Artificial neural networks presented a better prediction capability of specific heat, thermal conductivity, and density of milk than polynomial modeling. It showed a reasonable alternative to empirical modeling for thermophysical properties of foods.
Resumo:
The incomplete combustion of biomass is one of the most important sources of emissions of organic compounds into the atmosphere, like polycyclic aromatic hydrocarbons (PAHs) which show genotoxic activity. Since environmental samples generally contain interferents and trace amounts of PAHs of interest, concentration and clean-up procedures are usually required prior to the final chromatographic analysis. This paper discusses the performance of Sep-Pak cartridges (silica gel and RP18) on clean-up of sugar cane soot extract. The best results were obtained with a silica Sep-Pak cartridge. The recoveries ranged from 79% (benzo[b]fluoranthene) to 113% (benzo[e]pyrene). (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We investigate the linear optical properties and energy transfer processes in tungstate fluorophosphate glass doped with thulium (Tm3+) and neodymium (Nd3+) ions. The linear absorption spectra from 370 to 3000 nm were obtained. Transitions probabilities, radiative lifetimes, and transition branching ratios were determined using the Judd-Ofelt [Phys. Rev. 127, 750 (1962); J. Chem. Phys. 37, 511 (1962)] theory. Frequency up-conversion to the blue region and fluorescence in the infrared were observed upon pulsed excitation in the range of 630-700 nm. The excitation spectra of the luminescence were obtained to understand the origin of the signals. The temporal decay of the fluorescence was measured for different concentrations of the doping ions. Energy transfer rates among the Tm3+ and Nd3+ ions were also determined.
Resumo:
A competitive enzyme-linked immunosorbent assay (ELISA) method for carbaryl quantitation in crop extracts was validated by liquid chromatography (LC) with diode array detection (DAD). For this purpose, six crops (banana, carrot, green bean, orange, peach and potato) were chosen for recovery and reproducibility studies. The general sample preparation included extraction with methanol followed by liquid-liquid partitioning and clean-up on Celite-charcoal adsorbent column of the vegetable extracts. ELISA samples consisted of a diluted LC extract in assay phosphate buffer (pH 7.5). The potential effect of methanol in these samples was evaluated. It was observed that a maximum content of 10% methanol present in the assay buffer could be tolerated without expressive losses in the ELISA performance. Under these conditions, a IC50 similar to 1.48 mu g l(-1) was obtained. A minimum matrix effect with a 1:50 dilution of the methanolic extracts in assay buffer was noticed, except for green bean samples that inhibited completely the assay. For the vegetable extracts, the ELISA sensitivities varied from 3.9 to 5.7 mu g l(-1), and good recoveries (82-96%) with R.S.D.s ranging from 5.7 to 12.1% were found. An excellent correlation between the LC-DAD and ELISA techniques was obtained. The confirmation of the carbaryl in less concentrated samples was achieved by LC-mass spectrometry interfaced with atmospheric pressure chemical ionisation. The [M + H](+)= 202 and [M + H-57](+)=145 ions, equivalent to the protonated molecular and l-naphthol ions, respectively, were used to carbaryl identification in these samples. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: To determine the effect of heat and moisture exchange (HME) on the tracheobronchial tree (TBT) using a unidirectional anesthesic circuit with or without CO2 absorber and high or low fresh gas flow (FGF), in dogs. Methods: Thirty-two dogs were randomly allocated to four groups: G1 (n = 8) valvular circuit without CO2 absorber and high FGF (5 L·min-1); G2 (n = 8) as G1 with HME; G3 (n = 8) circuit with CO2 absorber with a low FGF (1 L·min-1); G4 (n = 8) as G3 with HME. Anesthesia was induced and maintained with pentobarbital. Tympanic temperature (TT), inhaled gas temperature (IGT), relative (RH) and absolute humidity (AH) of inhaled gas were measured at 15 (control), 60, 120 and 180 min of controlled ventilation. Dogs were euthanized and biopsies in the areas of TBT were performed by scanning electron microscopy. Results: The G2 and G4 groups showed the highest AH (>20 mgH2O·L-1) and G1 the lowest (< 10 mgH2O·L-1) and G3 was intermediate (<20 mgH2O·L-1) (P < 0.01). There was no difference of TT and IGT among groups. Alterations of the mucociliary system were greatest in G1, least in G2 and G4, and intermediate in G3. Conclusion: In dogs, introduction of HME to a unidirectional anesthetic circuit with/without CO2 absorber and high or low FGF preserved humidity of inspired gases. HME attenuated but did not prevent alterations of the mucociliary system of the TBT.
Resumo:
The photoluminescence features and the energy transfer processes of Nd3+-based siloxanepoly(oxyethylene) hybrids are reported. The host matrix of these materials, classed as di-ureasils, is formed by a siloxane backbone covalently bonded to polyether chains of two molecular weights by means of urea cross-links. The room-temperature photoluminescence spectra of these xerogels show a wide broad purple-blue-green band (350-570 nm), associated with the emitting centres of the di-ureasil host, and the typical near infrared emission of Nd3+ (700-1400 nm), assigned to the 4F3/2 → 4I9/2,11/2,13/2 transitions. Self-absorptions in the visible range, resonant with intra-4f3 transitions, indicate the existence of an energy conversion mechanism of visible di-ureasil emission into near infrared Nd3+ luminescence. The existence of energy transfer between the di-ureasil's emitting centres and the Nd3+ ions is demonstrated calculating the lifetimes of these emitting centres. The efficiency of that energy transfer changes both with the polymer molecular weight and the Nd3+ concentration.
Resumo:
In this report we investigate the optical properties and energy-transfer upconversion luminescence of Ho3+- and Tb3+/Yb 3+-codoped PbGeO3-PbF2-CdF2 glass-ceramic under infrared excitation. In Ho3+/Yb 3+-codoped sample, green(545 nm), red(652 nm), and near-infrared(754 nm) upconversion luminescence corresponding to the 4S 2(5F4) → 5I8, 5F5 → 5I8, and 4S2(5F4) → 5I 7, respectively, was readly observed. Blue(490 nm) signals assigned to the 5F2,3 → 5I8 transition was also detected. In the Tb3+/Yb3+ system, bright UV-visible emission around 384, 415, 438, 473-490, 545, 587, and 623 nm, identified as due to the 5D3(5G6) → 7FJ(J=6,5,4) and 5D4→ 7FJ(J=6,5,4,3) transitions, was measured. The comparison of the upconversion process in glass ceramic and its glassy precursor revealed that the former samples present much higher upconversion efficiencies. The dependence of the upconversion emission upon pump power, and doping contents was also examined. The results indicate that successive energy-transfer between ytterbium and holmium ions and cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The viability of using the samples for three-dimensional solid-state color displays is also discussed.
Resumo:
The steroidal glycoalkaloid solamargine and its parent aglycone solasodine, isolated from Solanum palinacanthum, were studied in vitro for cytotoxicity and biotransformation by the hepatic S9 fraction as the metabolic activating system. The MTT uptake assay was used to determine viability after 24 h in RAW 264.7 mouse macrophage-like and SiHa cells exposed to various concentrations of the alkaloids in the presence and absence of the hepatic S9 microsomal fraction. The dose-response curves were established for solamargine and solasodine in the presence and absence of external metabolizing system. From these data, the cytotoxic index (CI50) was calculated with mean values of 7.2 and 13.6 μg/mL for Raw cells and 8.6 and 26.0 μg/mL for SiHa cells, respectively. Mass spectrometry was performed to compare the fragmentation patterns of the alkaloids to predict metabolism by the S9 fraction. The mass spectra demonstrated a distinct fragmentation patterns for solamargine and solasodine after the addition of the S9 fraction. In the present study, we demonstrate that the cytotoxic effect of solamargine and solasodine and their metabolites prepared in vitro by biotransformation with the S9 fraction are comparable. These findings suggest that the metabolic activation system S9 fraction may fail to suppress the cytotoxicity of these alkaloids. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)