37 resultados para Ferroelectric behavior
Resumo:
Polycrystalline or single-crystal ferroelectric materials present dielectric dispersion in the frequency range 100 MHz-1 GHz that has been attributed to a dispersive ( relaxation-like) mechanism as well as a resonant mechanism. Particularly in 'normal' ferroelectric materials, a dielectric response that is indistinguishable from dispersion or a resonance has been reported. Nevertheless, the reported results are not conclusive enough to distinguish each mechanism clearly. A detailed study of the dielectric dispersion phenomenon has been carried out in PbTiO3-based ferroelectric ceramics, with the composition Pb1-xLaxTiO3 (x = 0.15), over a wide range of temperatures and frequencies, including microwave frequencies. The dielectric response of La-modified lead titanate ferroelectric ceramics, in 'virgin' and poled states, has been investigated in the temperature and frequency ranges 300-450 K and 1 kHz-2 GHz, respectively. The results revealed that the frequency dependence of the dielectric anomalies, depending on the measuring direction with respect to the orientation of the macroscopic polarization, may be described as a general mechanism related to an 'over-damped' resonant process. Applying either a uniaxial stress along the measurement field direction or a poling electric field parallel and/or perpendicular to the measuring direction, a resonant response of the real and imaginary components of the dielectric constant is observed, in contrast to the dispersion behavior obtained in the absence of the stress, for the 'virgin' samples. Both results, resonance and/or dispersion, can be explained by considering a common mechanism involving a resonant response (damped and/or over-damped) which is strongly affected by a ferroelastic-ferroelectric coupling, contributing to the low-field dielectric constant.
Resumo:
We have studied the phase transition behavior of Pb0.76Ca0.24TiO3 thin films using Raman scattering and dielectric measurement techniques. We also have studied the leakage current conduction mechanism as a function of temperature for these thin films on platinized silicon substrates. A Pb0.76Ca0.24TiO3 thin film was prepared using a soft chemical process, called the polymeric precursor method. The results showed that the dependence of the dielectric constant upon the frequency does not reveal any relaxor behavior. However, a diffuse character-type phase transition was observed upon transformation from a cubic paraelectric phase to a tetragonal ferroelectric phase. The temperature dependency of Raman scattering spectra was investigated through the ferroelectric phase transition. The soft mode showed a marked dependence on temperature and its disappearance at about 598 K. on the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive above the phase transition temperature. The origin of these modes must be interpreted in terms of a local breakdown of cubic symmetry by some kind of disorder. The lack of a well-defined transition temperature suggested a diffuse-type phase transition. This result corroborate the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in the thin film. The leakage current density of the PCT24 thin film was studied at elevated temperatures, and the data were well fitted by the Schottky emission model. The Schottky barrier height of the PCT24 thin film was estimated to be 1.49 eV. (C) 2003 American Institute of Physics.
Resumo:
Calcium modified lead titanate sol was synthesized using a soft solution processing, the so-called polymeric precursor method. In soft chemistry method, soluble precursors such as lead acetate trihydrate, calcium carbonate and titanium isopropoxide, as starting materials, were mixed in aqueous solution. Pb0.7Ca0.3TiO3 thin films were deposited on platinum-coated silicon and quartz substrates by means of the spinning technique. The surface morphology and crystal structure, dielectric and optical properties of the thin films were investigated. The electrical measurements were conducted on metal-ferroelectric-metal (MFM) capacitors. The typical measured small signal dielectric constant and dissipation factor at a frequency of 100 kHz were 299 and 0.065, respectively, for a thin film with 230 nm thickness annealed at 600degreesC for 2 h. The remanent polarization (2P(r)) and coercive field (E-c) were 32 muC/cm(2) and 100 kV/cm, respectively. Transmission spectra were recorded and from them, refractive index, extinction coefficient, and band gap energy were calculated. Thin films exhibited good optical transmissivity, and had optical direct transitions. The present study confirms the validity of the DiDomenico model for the interband transition, with a single electronic oscillator at 6.858 eV. The optical dispersion behavior of PCT thin film was found to fit well the Sellmeir dispersion equation. The band gap energy of the thin film, annealed at 600degreesC, was 3.56 eV. The results confirmed that soft solution processing provides an inexpensive and environmentally friendly route for the preparation of PCT thin films.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)