58 resultados para Epistolary exchange
Resumo:
A method based an ion exchange(IE)-atomic absorption spectrometry(AAS) coupled by flow techniques, allowing the determination of formation constants of, at least, the first species of complex systems, in aqueous solution, was developed.The IE-AAS coupling reduces significantly the number of experimental steps in comparison with IE batch methods, resulting in an important increase in analytical rate. The method is simple both from experimental and computational points of view, making possible its utilization by workers without special expertise in the field of complex equilibria in solution. on the other hand, taking into account mainly the amount of hollow cathode lamps available to date, the developed procedure may be applied, within certain limitations, to the study of many systems whose features prevent the use of traditional approaches.
Resumo:
The binding and availability of metals (Al, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Zn) in therapeutically applied peat (GroBes Gifhorner Moor, Sassenburg/North Germany) was characterized by means of a versatile extraction approach. Aqueous extracts of peat were obtained by a standardized batch equilibrium procedure using high-purity water (pH 4.5 and 5.0), 0.01 mol l(-1) calcium chloride solution, 0.0 1 mol l(-1) ethylenediaminetetraacetic acid (EDTA) and 0.01 mol l(-1) diethylenetriarnine pentaacetic acid (DTPA) solution as metal extractants. In addition, the availability of peat-bound metal species was kinetically studied by collecting aliquots of extracts after different periods of extraction time (5, 10, 15, 30, 60 and 120 min). Metal determinations were performed by atomic spectrometry methods (AAS, ICP-OES) and dissolved organic matter (DOM) was characterized by UV/Vis measurements at 254 and 436 nm, respectively. of the extractants studied Ca, Mg and Mn were the most available metals, in contrast to peat-bound Fe and Al. The relative standard deviation s(r) of the developed extraction procedures was mostly in the range of 4 to 20%, depending on the metal and its concentration in peat. A pH increase favored the extraction of metals and DOM from peat revealing complex extraction kinetics. Moreover, a competitive exchange between peat-bound metal species and added Cu(II) ions showed that > 100 mg of Cu(II) per 50 g wet peat was necessary to exchange the maximum of bound metals (e.g. 21.8% of Al, 3.9% of Fe, 79.0% of Mn, 81.9% of Sr, related to their total content). (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
This paper deals with an unusual application for a copolymer of styrene-1 % divinylbenzene bearing high amount of aminomethyl groups for anion-exchange and affinity chromatography. The so-called aminomethyl resin (AMR), to date only employed for peptide synthesis, swelled appreciably in water and was used successfully to purify negatively charged peptides. By correlating swelling degree of beads with pH of the media, it was possible to estimate that the AMR amino group pK(a) is approximately 5.5. In addition, the synthesized acetyl-(NANP)(3)-AMR succeeded in the affinity interaction with large antibody molecules related to malaria transmission and raised previously against this dodecapeptide sequence. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This report demonstrates that due to the presence of residual reactive sites in their matrices, classical diethylaminoethyl-attaching commercial anion-exchanger resins such as DEAE-MacroPrep and DEAE-Sephadex A50 supports can be used for peptide synthesis. Moreover, due to the high stability of the peptide-resin bond in the final cleavage treatments, desired peptidyl-resins free of side-chain protecting groups, which enables them to be further used as solid support for affinity chromatography, can be obtained. To demonstrate this potentiality, a fragment corresponding to the antigenic and immunodominant epitope of sporozoites of the Plasmodium falciparum malaria parasite was synthesized in these traditional resins and antibody molecules generated against the peptide sequence were successfully retained in these peptidyl supports. Due to the maintenance of their original anion-exchange capacities, the present findings open the unique possibility of applying, simultaneously, dual anion-exchange and affinity procedures for purification of a variety of macromolecules. (C) 2003 Elsevier B.V. (USA). All rights reserved.
Resumo:
Erbium-activated silica-based planar waveguides were prepared by three different technological routes: RF-sputtering, sol-gel and ion exchange. Various parameters of preparation were varied in order to optimize the waveguides for operation in the NIR region. Particular attention was devoted to the minimization of the losses and the increase of the luminescence efficiency of the metastable I-4(13/2) state of the Er3+ ion. Waveguide properties were determined by m-line spectroscopy and loss measurements. Waveguide Raman and luminescence spectroscopy were used to obtain information about the structure of the prepared films and about the dynamical processes related to the luminescence of the Er3+ ions.
Resumo:
Electron spin resonance of Eu(2+) (4f(7), S=7/2) in a La hexaboride (LaB(6)) single crystal shows a single anisotropic Dysonian resonance. From the observed negative g shift of the resonance, it is inferred that the Eu(2+) ions are covalent exchange coupled to the B 2p-like host conduction electrons. From the anisotropy of the spectra (linewidth and field for resonance), we found that the S ground state of Eu(2+) ions experience a cubic crystal field of a negative fourth order crystal field parameter (CFP), b(4)=-11.5(2.0) Oe, in agreement with the negative fourth order CFP, A(4), found for the non-S ground state R hexaborides. These results support covalency as the dominant contribution to the fourth order CFP for the whole R hexaboride family.
Resumo:
C-13 exchange solid-state NMR methods were used to study two families of siloxane/poly-(ethylene glycol) hybrid materials: Types I and II, where the polymer chains interact with the inorganic phase through physical (hydrogen bonds or van der Waals forces) or chemical (covalent bonds) interactions, respectively. These methods were employed to analyze the effects of the interactions between the organic and inorganic phases on the polymer dynamics in the milliseconds to seconds time scale, which occurs at temperatures below the motional narrowing of the NMR line width and around the polymer glass transition. Motional heterogeneities associated with these interactions and evidence of both small and large amplitude motions were directly observed for both types of hybrids. The results revealed that the hindrance to the slow molecular motions of the polymer chains due to the siloxane structures depends on the chain length and the nature of the interaction between the organic and inorganic phases.
Resumo:
The electron spin resonance (ESR) spectra of Eu2+ (4f(7), S = 7/2) in LaB6 single crystal show a single Dysonian resonance for the localized Eu2+ magnetic moments. It is shown that the Eu2+ ions are covalent exchange coupled to the (B) 2p-like host conduction electrons. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Labile metal species in aquatic humic substances (HSs) were characterized by ion exchange on cellulose phosphate (CellPhos) by applying an optimized batch procedure. The HSs investigated were pre-extracted from humic-rich waters by ultrafiltration and a resin XAD 8 procedure. The HS-metal species studied were formed by complexation with Cd(II), Ni(II), Cu(II), Mn(II) and Pb(II) as a function of time and the ratio ions to HSs. The kinetics and reaction order of this exchange process were studied. At the beginning (<3 min), the labile metal fractions are separated relatively quickly. After 3 min, the separation of the metal ions proceeds with uniform half-lives of about 12-14 min, revealing rather slow first-order kinetics. The metal exchange between HSs and CellPhos exhibited the following order of metal lability with the studied HSs: Cu > Pb > Mn > Ni > Cd. The required metal determinations were carried out by atomic absorption spectrometry.
Resumo:
The effect of different doses of nitrogen (N) on gas exchange, relative chlorophyll (Chl) amount, and the content of N in the aerial biomass of lisianthus was evaluated. The treatments consisted of six different concentrations of N (50, 100, 150, 200, 250, and 300 g m(-3) noted as N-50, N-100, N-150, N-200, N-250, and N-300, respectively), applied through the fertirrigation technique. N-250 and N-300 induced increase in the contents of foliar Chl and N in the aerial biomass, that in turn contributed to an increase of photosynthetic activity in lisianthus.
Resumo:
The present paper quantifies and develops the kinetic aspects involved in the mechanism of interplay between electron and ions presented elsewhere(1) for KhFek[Fe(CN)(6)](l)center dot mH(2)O (Prussian Blue) host materials. Accordingly, there are three different electrochemical processes involved in the PB host materials: H3O+, K+, and H+ insertion/extraction mechanisms which here were fully kinetically studied by means of the use of combined electronic and mass transfer functions as a tool to separate all the processes. The use of combined electronic and mass transfer functions was very important to validate and confirm the proposed mechanism. This mechanism allows the electrochemical and chemical processes involved in the KhFek[Fe(CN)(6)](l)center dot mH(2)O host and Prussian Blue derivatives to be understood. In addition, a formalism was also developed to consider superficial oxygen reduction. From the analysis of the kinetic processes involved in the model, it was possible to demonstrate that the processes associated with K+ and H+ exchanges are reversible whereas the H3O+ insertion process was shown not to present a reversible pattern. This irreversible pattern is very peculiar and was shown to be related to the catalytic proton reduction reaction. Furthermore, from the model, it was possible to calculate the number density of available sites for each intercalation/deintercalation processes and infer that they are very similar for K+ and H+. Hence, the high prominence of the K+ exchange observed in the voltammetric responses has a kinetic origin and is not related to the amount of sites available for intercalation/deintercalation of the ions.
Resumo:
Anomalous thermal behavior on the EPR linewidths of Gd impurities diluted in Cc compounds has been observed. In metals, the local magnetic moment EPR linewidth, Delta H, is expected to increase linearly with the temperature. In contrast, in CexLa1-xOs2 the Gd EPR spectra show a nonlinear increase. In this work, the mechanisms that are responsible for the thermal behavior of the EPR lines in CexLa1-xOs2 are examined. We show that the exchange interaction between the local magnetic moments and the conduction electrons are responsible for the narrowing of the spectra at low temperatures. At high temperatures, the contribution to the linewidth of the exchange interaction between the local magnetic moments and the Ce ions has an exponential dependence on the excitation energy of the intermediate valent ions. A complete fitting of the EPR spectra for powdered samples is obtained, (C) 1998 American Institute of Physics. [S0021-8979(98)39911-9].
Resumo:
We argue that the minimal chiral background for the two-pion exchange nucleon-nucleon (NN) interaction has nowadays a rather firm conceptual basis, which entitles it to become a standard ingredient of any modern potential. In order to facilitate applications, we present a parametrized version of a configuration space potential derived previously. We than use it to assess the phenomenological contents of some existing NN potentials.
Resumo:
The magnetic order resulting from the indirect exchange in the metallic phase of a (Ga,Mn)As/GaAs double layer structure is studied via Monte Carlo simulation. The polarization of the hole gas is taken into account, establishing a self-consistency between the magnetic order and the electronic structure. The Curie-Weiss temperatures calculated for these low-dimensional systems are in the range of 50-80 K, and the dependence of the transition temperature with the GaAs separation layer is established. (C) 2003 Published by Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)