69 resultados para Dynamic Navigation Model
Resumo:
The non-isothermal data given by TG curves for poly(3-hydroxybutyrate) (PHB) were studied in order to obtain a consistent kinetic model that better represents the PHB thermal decomposition. Thus, data obtained from the dynamic TG curves were suitably managed in order to obtain the Arrhenius kinetic parameter E according to the isoconversional F-W-O method. Once the E parameters is found, a suitable logA and kinetic model (f(alpha)) could be calculated. Hence, the kinetic triplet (E +/- SD, logA +/- SD and f(alpha)) obtained for the thermal decomposition of PHB under non-isothermal conditions was E=152 +/- 4 kJ mol(-1), logA=14.1 +/- 0.2 s(-1) for the kinetic model, and the autocatalytic model function was: f(alpha)=alpha(m)(1-alpha)(n)=alpha(0.42)(1-alpha)(0.56).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The general objective of this work was to develop a monitoring and management model for aquatic plants that could be used in reservoir cascades in Brazil, using the reservoirs of AES-Tiete as a study case. The investigations were carried out at the reservoirs of Barra-Bonita, Bariri, Ibitinga, Promissao, and Nova-Avanhandava, located in the Tiete River Basin; Agua Vermelha, located in the Grande River Basin; Caconde, Limoeiro, and Euclides da Cunha, which are part of the Pardo River Basin; and the Mogi-Guacu reservoir, which belongs to the Mogi-Guacu River basin. The main products of this work were: development of techniques using satellite-generated images for monitoring and planning aquatic plant control; planning and construction of a boat to move floating plant masses and an airboat equipped with a DGPS navigation and application flow control system. Results allowed to conclude that the occurrence of all types of aquatic plants is directly associated with sedimentation process and, consequently, with nutrient and light availability. Reservoirs placed at the beginning of cascades are more subject to sedimentation and occurrence of marginal, floating and emerged plants, and are the priority when it comes to controlling these plants, since they provide a supply of weeds for the other reservoirs. Reservoirs placed downstream show smaller amounts of water-suspended solids, with greater transmission of light and occurrence of submerged plants.
On non-ideal simple portal frame structural model: Experimental results under a non-ideal excitation
Resumo:
We present measurements of the non-linear oscillations of a portal frame foundation for a non-ideal motor. We consider a three-time redundant structure with two columns, clamped in their bases and a horizontal beam. An electrical unbalanced motor is mounted at mid span of the beam. Two non-linear phenomena are studied: a) mode saturation and energy transfer between modes; b) interaction between high amplitude motions of the structure and the rotation regime of a real limited power motor. The dynamic characteristics of the structure were chosen to have one-to-two internal resonance between the anti-symmetrical mode (sway motions) and the first symmetrical mode natural frequencies. As the excitation frequency reaches near resonance conditions with the 2nd natural frequency, the amplitude of this mode grows up to a certain level and then it saturates. The surplus energy pumped into the system is transferred to the sway mode, which experiences a sudden increase in its amplitude. Energy is transformed from low amplitude high frequency motion into high amplitude low frequency motion. Such a transformation is potentially dangerous.We consider the fact that real motors, such as the one used in this study, have limited power output. In this case, this energy source is said to be non-ideal, in contrast to the ideal source whose amplitude and frequency are independent of the motion of the structure. Our experimental research detected the Sommerfeld Effect: as the motor accelerates to reach near resonant conditions, a considerable part of its output energy is consumed to generate large amplitude motions of the structure and not to increase its own angular speed. For certain parameters of the system, the motor can get stuck at resonance not having enough power to reach higher rotation regimes. If some more power is available, jump phenomena may occur from near resonance to considerably higher motor speed regimes, no stable motions being possible between these two.
Resumo:
The objective of this work was to model and diagnose the spatial variability of soil load support capacity (SLSC) in sugar cane crop fields, as well as to evaluate the management impact on São Paulo State soil structure. The investigated variables were: pressure preconsolidation (sigma(p)), apparent cohesion () and internal friction angle (). The conclusions from the results were that the models and spatial dependence maps constitute important tools in the prediction and location of the mechanical internal strength of soils cultivated with sugar cane. They will help future soil management decisions so that soil structure sustainability will not be compromised.
Resumo:
This work focuses on the dynamic modeling of a flexible robotic manipulator with two flexible links and two revolute joints, which rotates in the horizontal plane. The dynamic equations are derived using the Newton-Euler formulation and the finite element method, based on elementary beam theory. Computer simulation results are presented to illustrate this study. The dynamic model becomes necessary for use in future design and control applications.
Resumo:
The generation expansion planning (GEP) problem consists in determining the type of technology, size, location and time at which new generation units must be integrated to the system, over a given planning horizon, to satisfy the forecasted energy demand. Over the past few years, due to an increasing awareness of environmental issues, different approaches to solve the GEP problem have included some sort of environmental policy, typically based on emission constraints. This paper presents a linear model in a dynamic version to solve the GEP problem. The main difference between the proposed model and most of the works presented in the specialized literature is the way the environmental policy is envisaged. Such policy includes: i) the taxation of CO(2) emissions, ii) an annual Emissions Reduction Rate (ERR) in the overall system, and iii) the gradual retirement of old inefficient generation plants. The proposed model is applied in an 11-region to design the most cost-effective and sustainable 10-technology US energy portfolio for the next 20 years.
Resumo:
In this paper, we discuss a method of preliminary orbit determination for an artificial satellite based on the navigation message of the GPS constellation. Orbital elements are considered as state variables and a simple dynamic model, based on the classic two-body problem, is used. The observations are formed by range and range and range-rate with respect to four visible GPS. A discrete Kalman filter with simulated data is used as filtering technique. The data are obtained through numerical propagation (Cowell's method), which considers special perturbations for the GPS satellite constellation and a user satellite. © 1997 COSPAR. Published by Elsevier Science Ltd.
Resumo:
Although conventional rotating machines have been largely used to drive underground transportation systems, linear induction motors are also being considered for future applications owing to their indisputable advantages. A mathematical model for the transient behavior analysis of linear induction motors, when operating with constant r.m.s. currents, is presented in this paper. Operating conditions, like phase short-circuit and input frequency variations and also some design characteristics, such as air-gap and secondary resistivity variations, can be considered by means of this modeling. The basis of the mathematical modeling is presented. Experimental results obtained in the laboratory are compared with the corresponding simulations and discussed in this paper.
Resumo:
In this article, an implementation of structural health monitoring process automation based on vibration measurements is proposed. The work presents an alternative approach which intent is to exploit the capability of model updating techniques associated to neural networks to be used in a process of automation of fault detection. The updating procedure supplies a reliable model which permits to simulate any damage condition in order to establish direct correlation between faults and deviation in the response of the model. The ability of the neural networks to recognize, at known signature, changes in the actual data of a model in real time are explored to investigate changes of the actual operation conditions of the system. The learning of the network is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data as well as measured experimental data.
Resumo:
The problem of dynamic camera calibration considering moving objects in close range environments using straight lines as references is addressed. A mathematical model for the correspondence of a straight line in the object and image spaces is discussed. This model is based on the equivalence between the vector normal to the interpretation plane in the image space and the vector normal to the rotated interpretation plane in the object space. In order to solve the dynamic camera calibration, Kalman Filtering is applied; an iterative process based on the recursive property of the Kalman Filter is defined, using the sequentially estimated camera orientation parameters to feedback the feature extraction process in the image. For the dynamic case, e.g. an image sequence of a moving object, a state prediction and a covariance matrix for the next instant is obtained using the available estimates and the system model. Filtered state estimates can be computed from these predicted estimates using the Kalman Filtering approach and based on the system model parameters with good quality, for each instant of an image sequence. The proposed approach was tested with simulated and real data. Experiments with real data were carried out in a controlled environment, considering a sequence of images of a moving cube in a linear trajectory over a flat surface.
Resumo:
A nonthermal quantum mechanical statistical fragmentation model based on tunneling of particles through potential barriers is studied in compact two- and three-dimensional systems. It is shown that this fragmentation dynamics gives origin to several static and dynamic scaling relations. The critical exponents are found and compared with those obtained in classical statistical models of fragmentation of general interest, in particular with thermal fragmentation involving classical processes over potential barriers. Besides its general theoretical interest, the fragmentation dynamics discussed here is complementary to classical fragmentation dynamics of interest in chemical kinetics and can be useful in the study of a number of other dynamic processes such as nuclear fragmentation. ©2000 The American Physical Society.
Resumo:
The purpose of this investigation was to determine whether the coupling between dynamic somatosensory information and body sway is similar in children and adults. Thirty children (4-, 6-, and 8-year-olds) and 10 adults stood upright, with feet parallel, and lightly contacting the fingertip to a rigid metal plate that moved rhythmically at 0.2, 0.5, and 0.8 Hz. Light touch to the moving contact surface induced postural sway in all participants. The somatosensory stimulus produced a broadband frequency response in children, while the adult response was primarily at the driving frequency. Gain, as a function of frequency, was qualitatively the same in children and adults. Phase decreased less in 4-year-olds than other age groups, suggesting a weaker coupling to position information in the sensory stimulus. Postural sway variability was larger in children than adults. These findings suggest that, even as young as age 6, children show well-developed coupling to the sensory stimulus. However, unlike adults, this coupling is not well focused at the frequency specified by the somatosensory signal. Children may be unable to uncouple from sensory information that is less relevant to the task, resulting in a broadband response in their frequency spectrum. Moreover, higher sway variability may not result from the sensory feedback process, but rather from the children's underdeveloped ability to estimate an internal model of body orientation.
Resumo:
The nonlinear dynamic response and a nonlinear control method of a particular portal frame foundation for an unbalanced rotating machine with limited power (non-ideal motor) are examined. Numerical simulations are performed for a set of control parameters (depending on the voltage of the motor) related to the static and dynamic characteristics of the motor. The interaction of the structure with the excitation source may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the systems. A mathematical model having two degrees of freedom simplifies the non-ideal system. The study of controlling steady-state vibrations of the non-ideal system is based on the saturation phenomenon due to internal resonance.
Resumo:
The Predispatch model (PD) calculates a short-term generation policy for power systems. In this work a PD model is proposed that improves two modeling aspects generally neglected in the literature: voltage/reactive power constraints and ramp rate constraints for generating units. Reactive power constraints turn the PD into a non-linear problem and the ramp rate constraints couple the problem dynamically in time domain. The solution of the PD is turned into a harder task when such constraints are introduced. The dual decomposition/ lagrangian relaxation technique is used in the solution approach for handing dynamic constraints. As a result the PD is decomposed into a series of independent Optimal Power Flow (FPO) sub problems, in which the reactive power is represented in detail. The solution of the independent FPO is coordinated by means of Lagrange multipliers, so that dynamic constraints are iteratively satisfied. Comparisons between dispatch policies calculated with and without the representation of ramp rate constraints are performed, using the IEEE 30 bus test system. The results point-out the importance of representing such constraints in the generation dispatch policy. © 2004 IEEE.