46 resultados para Delaware Water Gap National Recreation Area (N.J. and Pa.)--Maps.
Resumo:
A high surface area silica gel (737 ± m2 g-1) was synthesized modified through a two-step reaction with a 4-amino-2-mercaptopyrimidine ligand and applied to Cu(II) and Cd(II) adsorption from an aqueous medium. The modified material was characterized by FTIR, which showed that attachment of the molecule occurred via thiol groups at 2547 and 2600 cm-1, and by elemental analysis that indicated the presence of 0.0102 mmol of ligand. The data from adsorption experiments were adjusted to a modified Langmuir equation and the maximum adsorption capacity was 6.6 and 3.8 μmol g-1 for Cu(II) and Cd(II), respectively. After adjusting several parameters, the material was applied in the preconcentration of natural river water using a continuous flow system before and after sample mineralization, and the results showed a 10-fold enrichment factor. The proposed method was validated through preconcentration and analysis of certified standard reference material (1643e), whose results were in agreement with the values provided by the manufacturer.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The self-assembly of short amino acid chains appears to be one of the most promising strategies for the fabrication of nanostructures. Their solubility in water and the possibility of chemical modification by targeting the amino or carboxyl terminus give peptide-based nanostructures several advantages over carbon nanotube nanostructures. However, because these systems are synthesized in aqueous solution, a deeper understanding is needed on the effects of water especially with respect to the electronic, structural and transport properties. In this work, the electronic properties of l-diphenylalanine nanotubes (FF-NTs) have been studied using the Self-Consistent Charge Density-Functional-based Tight-Binding method augmented with dispersion interaction. The presence of water molecules in the central hydrophilic channel and their interaction with the nanostructures are addressed. We demonstrate that the presence of water leads to significant changes in the electronic properties of these systems decreasing the band gap which can lead to an increase in the hopping probability and the conductivity. © the Owner Societies 2013.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em História - FCHS
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The mechanical harvesting is an important stage in the production process of soybeans and, in this process; the loss of a significant number of grains is common. Despite the existence of mechanisms to monitor these losses, it is still essential to use sampling methods to quantify them. Assuming that the size of the sample area affects the reliability and variability between samples in quantifying losses, this paper aimed to analyze the variability and feasibility of using different sizes of sample area (1, 2 and 3 m²) in quantifying losses in the mechanical harvesting of soybeans. Were sampled 36 sites and the cutting losses, losses by other mechanisms of the combine and total losses were evaluated, as well as the water content in seeds, straw distribution and crop productivity. Data were subjected to statistical analysis (descriptive statistics and analysis of variance) and Statistical Control Process (SCP). The coefficients of variation were similar for the three frames available. Combine losses showed stable behavior, whereas cutting losses and total losses showed unstable behavior. The frame size did not affect the quantification and variability of losses in the mechanical harvesting of soybeans, thus a frame of 1 m² can be used for determining losses.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)