340 resultados para DOPED POLYTHIOPHENE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work Ba0.99Eu0.01MoO4 (BEMO) powders were prepared by the first time by the Complex Polymerization Method. The structural and optical properties of the BEMO powders were characterized by Fourier Transform Infra-Red (FTIR), X-ray Diffraction (XRD), Raman Spectra, High-Resolution Scanning Electron Microscopy (HR-SEM) and Photoluminescent Measurements. XRD show a crystalline scheelite-type phase after the heat treatment at temperatures greater than 400 degrees C. The ionic radius of Eu3+ (0.109 nm) is lower than the Ba2+ (0.149 nm) one. This difference is responsible for the decrease in the lattice parameters of the BEMO compared to the pure BaMoO4 matrix. This little difference in the lattice parameters show that Eu3+ is expected to occupy the Ba2+ site at different temperatures, stayed the tetragonal (S-4) symmetry characteristic of scheelite-type crystalline structures of BaMoO4. The emission spectra of the samples, when excited at 394 nm, presented the D-5(1)-> F-7(0, 1 and 2) and D-5(0)-> F-7(0, 1, 2, 3 and 4) Eu3+ transitions at 523, 533, 554, 578, 589, 614, 652 and 699 nm, respectively. The emission spectra of the powders heat-treated at 800 and 900 degrees C showed a marked increase in its intensities compared to the materials heat-treated from 400 to 700 C. The decay times for the sample were evaluated and all of them presented the average value of 0.61 ms. Eu3+ luminescence decay time follows one exponential curve indicating the presence of only one type of Eu3+ symmetry site.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A nickel modified boron doped diamond (Ni-BDD) electrode and nickel foil electrode were used in the determination of methanol in alkaline solutions. The Ni-BDD electrode was electrodeposited from a 1 mM Ni(NO(3))(2) solution (pH 5), followed by repeat cycling in KOH. Subsequent analysis utilised the Ni(OH)(2)/NiOOH redox couple to electrocatalyse the oxidation of methanol. Methanol was determined to limits of 0.3 mM with a sensitivity of 110 nA/mM at the Ni-BDD electrode. The foil electrode was less sensitive achieving a limit of 1.6 mM and sensitivity of 27 nA/mM. SEM analysis of the electrodes found the Ni-BDD to be modified by a quasi-random microparticle array.
Resumo:
The primary excited state absorption processes relating to the (5)I(6) -> (5)I(7) 3 mu m laser transition in singly Ho(3+)-doped fluoride glass have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the (5)I(6) and (5)I(7) energy levels established the occurrence of two excited state absorption transitions from these energy levels that compete with previously described energy transfer upconversion processes. The (5)I(7) -> (5)I(4) excited state absorption transition has peak cross sections at 1216 nm (sigma(esa)=2.8x10(-21) cm(2)), 1174 nm (sigma(esa)=1x10(-21) cm(2)), and 1134 nm (sigma(esa)=7.4x10(-22) cm(2)) which have a strong overlap with the (5)I(8) -> (5)I(6) ground state absorption. on the other hand, it was established that the excited state absorption transition (5)I(6) -> (5)S(2) had a weak overlap with ground state absorption. Using numerical solution of the rate equations, we show that Ho(3+)-doped fluoride fiber lasers employing pumping at 1100 nm rely on excited state absorption from the lowest excited state of Ho(3+) to maintain a population inversion and that energy transfer upconversion processes compete detrimentally with the excited state absorption processes in concentrated Ho(3+)-doped fluoride glass. (c) 2008 American Institute of Physics.
Resumo:
In this work, GdAlO3:Pr3+ was successfully prepared by the Pechini method at lower temperatures when compared to others methods such as solid-state synthesis and sol-gel process. In accordance to the XRD data, the fully crystalline single-phase GdAlO3 could be obtained at 900 degrees C. Luminescence measurements indicate Gd -> Pr3+ energy transfer. In the emission spectra, the P-3(0) ->(3) H-4 (blue emission) and D-1(2) ->(3) H-4 (red emission) transitions of Pr3+ ions can be observed and the ratio between their intensities depends on the Pr3+ content due to the cross-relaxation phenomenon.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Multicolor and white light emissions have been achieved in Yb3+, Tm3+ and Ho3+ triply doped heavy metal oxide glasses upon laser excitation at 980 nm. The red (660 nm), green (547 nm) and blue (478 nm) up conversion emissions of the rare earth (RE) ions triply doped TeO2-GeO2-Bi2O3-K2O glass (TGBK) have been investigated as a function of the RE concentration and excitation power of the 980 nm laser diode. The most appropriate combination of RE in the TGBK glass host (1.6 wt% Yb2O3, 0.6 wt% Tm2O3 and 0.1 wt% Ho2O3) has been determined with the purpose to tune the primary colors (RGB) respective emissions and generate white light emission by varying the pump power. The involved infrared to visible up conversion mechanisms mainly consist in a three-photon blue up conversion of Tm3+ ions and a two-photon green and red up conversions of Ho3+ ions. The resulting multicolor emissions have been described according to the CIE-1931 standards. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The sol-gel method combined with a spin-coating technique has been successfully applied for the preparation of rare-earth doped silica:germania films used for the fabrication of erbium-doped waveguide amplifiers (EDWA), presenting several advantages over other methods for the preparation of thin films. As with other methods, the sol-gel route also shows some drawbacks, such as cracks related to the thickness of silica films and high hydrolysis rate of certain precursors such as germanium alkoxides. This article describes the preparation and optical characterization of erbium and ytterbium co-doped SiO2:GeO2 crack-free thick films prepared by the sol-gel route combined with a spin-coating technique using a chemically stable non-aqueous germanium oxide solution as an alternative precursor. The non-crystalline films obtained are planar waveguides exhibiting a single mode at 1,550 nm with an average thickness of 3.9 mu m presenting low percentages of porosity evaluated by the Lorentz-Lorenz Effective Medium Approximation, and low stress, according to the refractive index values measured in both transversal electric and magnetic polarizations. Weakly confining core layers (0.3% < Delta n < 0.75%) were obtained according to the refractive index difference between the core and buffer layers, suggesting that low-loss coupling EDWA may be obtained. The life time of the erbium I-4(13/2) metastable state was measured as a function of erbium concentration in different systems and based on these values it is possible to infer that the hydroxyl group was reduced and the formation of rare-earth clusters was avoided.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work we studied the structural and optical properties of lithium tantalate (LiTaO3) powders doped with Eu3+ ions. We have examined the different sites occupied by the rare earth ion through the correlation of the DRX data analyzed with the Rietveld method and some spectroscopic parameters derived from the Eu3+ luminescence. Adirect relation was established between the lattice parameters and the occupation fraction of Eu3+ in each LiTaO3 site. The occupation fraction was set as the relative population of Eu3+ ions for each site obtained by means of the intensity, baricenter, and the spontaneous emission coefficients of the D-5(0)-> F-7(0) transitions. We concluded that the unit cell parameter a presents the same behavior of the Eu3+ occupation fraction in Ta5+ sites as a function of the Eu3+ content in LiTaO3. The same was observed for the variation in Eu3+ occupation fraction in the Li+ site and the unit cell parameter c with the Eu3+ content. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3204967]