108 resultados para Chu-Beasley genetic algorithms
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
This paper applies a genetic algorithm with hierarchically structured population to solve unconstrained optimization problems. The population has individuals distributed in several overlapping clusters, each one with a leader and a variable number of support individuals. The hierarchy establishes that leaders must be fitter than its supporters with the topological organization of the clusters following a tree. Computational tests evaluate different population structures, population sizes and crossover operators for better algorithm performance. A set of known benchmark test problems is solved and the results found are compared with those obtained from other methods described in the literature, namely, two genetic algorithms, a simulated annealing, a differential evolution and a particle swarm optimization. The results indicate that the method employed is capable of achieving better performance than the previous approaches in regard as the two criteria usually employed for comparisons: the number of function evaluations and rate of success. The method also has a superior performance if the number of problems solved is taken into account. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper describes a novel approach for mapping lightning processes using fuzzy logic. The estimation process is carried out using a fuzzy system based on Sugeno's architecture. Simulation results confirm that proposed approach can be efficiently used in these types of problem.
Resumo:
In this paper, an efficient genetic algorithm (GA) is presented to solve the problem of multistage and coordinated transmission expansion planning. This is a mixed integer nonlinear programming problem, difficult for systems of medium and large size and high complexity. The GA presented has a set of specialized genetic operators and an efficient form of generation of the initial population that finds high quality suboptimal topologies for large size and high complexity systems. In these systems, multistage and coordinated planning present a lower investment than static planning. Tests results are shown in one medium complexity system and one large size high complexity system.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Smart material technology has become an area of increasing interest for the development of lighter and stronger structures which are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains, is a very important issue. For that purpose, smart material modelling, modal analysis methods, control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first one is related to the discrete optimal actuator location selection problem which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.
Resumo:
Smart material technology has become an area of increasing interest for the development of lighter and stronger structures that are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains is a very important issue. For that purpose, smart material modeling, modal analysis methods, and control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first is related to the discrete optimal actuator location selection problem, which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.
Predicting peptides structure with solvation potential and rotamer library dependent of the backbone
Resumo:
In this work, genetic algorithms concepts along with a rotamer library dependent of backbone and implicit solvation potential are used to study the tertiary structure of peptides. We starting from known primary sequence and optimize the structure of the backbone while the side chains allowed adopting the conformations present in a rotamer library. The GA, implemented with two force fields with a growing complexity, was used predict the structure of a polyalanine and a poly-isolueucine. This paper presents good and interesting results about the study of peptides structures and about the development of computational tools to study peptides structures. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Petroleum well drilling is an expensive and risky operation. In this context, well design presents itself as a fundamental key to decrease costs and risks involved. Experience acquired by engineers is notably an important factor in good drilling design elaborations. Therefore, the loss of this knowledge may entail additional problems and costs. In this way, this work represents an initiative to model a petroleum well design case-based architecture. Tests with a prototype showed that the system built with this architecture may help in a well design and enable corporate knowledge preservation. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Large scale combinatorial problems such as the network expansion problem present an amazingly high number of alternative configurations with practically the same investment, but with substantially different structures (configurations obtained with different sets of circuit/transformer additions). The proposed parallel tabu search algorithm has shown to be effective in exploring this type of optimization landscape. The algorithm is a third generation tabu search procedure with several advanced features. This is the most comprehensive combinatorial optimization technique available for treating difficult problems such as the transmission expansion planning. The method includes features of a variety of other approaches such as heuristic search, simulated annealing and genetic algorithms. In all test cases studied there are new generation, load sites which can be connected to an existing main network: such connections may require more than one line, transformer addition, which makes the problem harder in the sense that more combinations have to be considered.
Resumo:
We have investigated and extensively tested three families of non-convex optimization approaches for solving the transmission network expansion planning problem: simulated annealing (SA), genetic algorithms (GA), and tabu search algorithms (TS). The paper compares the main features of the three approaches and presents an integrated view of these methodologies. A hybrid approach is then proposed which presents performances which are far better than the ones obtained with any of these approaches individually. Results obtained in tests performed with large scale real-life networks are summarized.
Resumo:
Minimizing the makespan of a flow-shop no-wait (FSNW) schedule where the processing times are randomly distributed is an important NP-Complete Combinatorial Optimization Problem. In spite of this, it can be found only in very few papers in the literature. By considering the Start Interval Concept, this problem can be formulated, in a practical way, in function of the probability of the success in preserve FSNW constraints for all tasks execution. With this formulation, for the particular case with 3 machines, this paper presents different heuristics solutions: by integrating local optimization steps with insertion procedures and by using genetic algorithms for search the solution space. Computational results and performance evaluations are commented. Copyright (C) 1998 IFAC.
Resumo:
The capacitor placement (replacement) problem for radial distribution networks determines capacitor types, sizes, locations and control schemes. Optimal capacitor placement is a hard combinatorial problem that can be formulated as a mixed integer nonlinear program. Since this is a NP complete problem (Non Polynomial time) the solution approach uses a combinatorial search algorithm. The paper proposes a hybrid method drawn upon the Tabu Search approach, extended with features taken from other combinatorial approaches such as genetic algorithms and simulated annealing, and from practical heuristic approaches. The proposed method has been tested in a range of networks available in the literature with superior results regarding both quality and cost of solutions.