144 resultados para Chronic hepatitis C
Resumo:
Background: Hepatitis C virus (HCV) currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed.Results: the atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures.Conclusions: This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure-based drug design of a new generation of NS3 protease variants inhibitors. All models in the database are publicly accessible via our interactive website, providing us with large amount of structural models for use in protein-ligand docking analysis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fractional factorial design and factorial with center point design were applied to the development of an amperometric biosensor for the detection of the hepatitis C virus. Biomolecules were immobilized by adsorption on graphite electrodes modified with siloxane-poly(propyleneoxide) hybrid matrix prepared using the sol-gel method. Several parameters were optimized, such as the streptavidin concentration at 0.01 mg mL(-1) and 1.0% bovine serum albumin, the incubation time of the electrodes in the complementary DNA solution for 30 minutes and a 1: 1500 dilution of the avidin-peroxidase conjugate, among others. The application of chemometric studies has been efficient, since the best conditions have been established with a restricted number of experiments, indicating the influence of different factors on the system.
Resumo:
We present a new strategy for the label-free electrochemical detection of DNA hybridization for detecting hepatitis C virus based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes. Synthetic single-stranded 18-mer HCV genotype-1-specific probe DNA has been immobilized at a 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole film established by electropolymerization at the previously formed polypyrrole layer. HCV DNA sequences (244-mer) resulting from the reverse transcriptase-linked polymerase chain reaction amplification of the original viral RNA were monitored by affecting the ion-exchange properties of the polypyrrole film. The performance of this miniaturized DNA sensor system was studied in respect to selectivity, sensitivity, and reproducibility. The limit of detection was determined at 1.82 x 10(-21) mol L-1. Control experiments were performed with cDNA from HCV genotypes 2a/c, 2b, and 3 and did not show any unspecific binding. Additionally, the influence of the spacer length of 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole on the behavior of the DNA sensor was investigated. This biosensing scheme was finally extended to the electrochemical detection of DNA at submicrometer-sized DNA biosensors integrated into bifunctional atomic force scanning electrochemical microscopy probes. The 18-mer DNA target was again monitored by following the ion-exchange properties of the polypyrrole film. Control experiments were performed with 12-base pair mismatched sequences.
Resumo:
Introduction ,,,,,Despite hepatocytes being the target cells of hepatitis C virus (HCV), viral ribonucleic acid RNA has been detected in other cells, including platelets, which have been described as carriers of the virus in the circulation of infected patients. Platelets do not express cluster differentiation 81 CD81, the main receptor for the virus in hepatocytes, although this receptor protein has been found in megakaryocytes. Still, it is not clear if HCV interacts with platelets directly or if this interaction is a consequence of its association with megakaryocytes. The aim of this study was to evaluate the interaction of HCV with platelets from non-infected individuals, after in vitro exposure to the virus. ,,,, ,,,, ,,,,,Methods ,,,,,Platelets obtained from 50 blood donors not infected by HCV were incubated in vitro at 37°C for 48h with serum containing 100,000IU∕mL of genotype 1 HCV. After incubation, RNA extracted from the platelets was assayed for the presence of HCV by reverse transcription – polymerase chain reaction RT-PCR. ,,,, ,,,, ,,,,,Results ,,,,,After incubation in the presence of virus, all samples of platelets showed HCV RNA. ,,,, ,,,, ,,,,,Conclusions ,,,,,The results demonstrate that, in vitro, the virus interacts with platelets despite the absence of the receptor CD81, suggesting that other molecules could be involved in this association.
Resumo:
Background. About 130 million people are infected with the hepatitis C virus (HCV) worldwide, but effective treatment options are not yet available. One of the most promising targets for antiviral therapy is nonstructural protein 3 (NS3). To identify possible changes in the structure of NS3 associated with virological sustained response or non-response of patients, a model was constructed for each helicase NS3 protein coding sequence. From this, the goal was to verify the interaction between helicases variants and their ligands. Findings. Evidence was found that the NS3 helicase portion of non-responder patients contained substitutions in its ATP and RNA binding sites. K210E substitution can cause an imbalance in the distribution of loads, leading to a decrease in the number of ligations between the essential amino acids required for the hydrolysis of ATP. W501R substitution causes an imbalance in the distribution of loads, leading and forcing the RNA to interact with the amino acid Thr269, but not preventing binding of ribavirin inhibitor. Conclusions. Useful information is provided on the genetic profiling of the HCV genotype 3, specifically the coding region of the NS3 protein, improving our understanding of the viral genome and the regions of its protein catalytic site. © 2010 Rahal et al; licensee BioMed Central Ltd.
Resumo:
Background:Hepatitis C is a disease spread throughout the world. Hepatitis C virus (HCV), the etiological agent of this disease, is a single-stranded positive RNA virus. Its genome encodes a single precursor protein that yields ten proteins after processing. NS5A, one of the non-structural viral proteins, is most associated with interferon-based therapy response, the approved treatment for hepatitis C in Brazil. HCV has a high mutation rate and therefore high variability, which may be important for evading the immune system and response to therapy. The aim of this study was to analyze the evolution of NS5A quasispecies before, during, and after treatment in patients infected with HCV genotype 3a who presented different therapy responses.Methods:Viral RNA was extracted, cDNA was synthesized, the NS5A region was amplified and cloned, and 15 clones from each time-point were sequenced. The sequences were analyzed for evolutionary history, genetic diversity and selection.Results:This analysis shows that the viral population that persists after treatment for most non-responder patients is present in before-treatment samples, suggesting it is adapted to evade treatment. In contrast, the population found in before treatment samples from most end-of-treatment responder patients either are selected out or appears in low frequency after relapse, therefore changing the population structure. The exceptions illustrate the uniqueness of the evolutionary process, and therefore the treatment resistance process, in each patient.Conclusion:Although evolutionary behavior throughout treatment showed that each patient presented different population dynamics unrelated to therapy outcome, it seems that the viral population from non-responders that resists the treatment already had strains that could evade therapy before it started. © 2013 Bittar et al.
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB