39 resultados para Carbon films
Resumo:
Siloxane-polymethyl methacrylate hybrid films containing functionalized multiwall carbon nanotubes (CNTs) were deposited by dip-coating on carbon steel substrates from a sol prepared by radical polymerization of methyl methacrylate and 3-methacryloxy propyl-trimethoxysilane, followed by hydrolytic co-polycondensation of tetraethoxysilane. The correlation between the structural properties and corrosion protection efficiency was studied as a function of the molar ratio of nanotubes carbon to silicon, varied in the range between 0.1% and 5%. 29Si nuclear magnetic resonance and thermogravimetric measurements have shown that hybrids containing carbon nanotubes have a similar degree of polycondensation and thermal stability as the undoped matrix and exhibit and excellent adhesion to the substrate. Microscopy and X-ray photoelectron spectroscopy results revealed a very good dispersion of carbon nanotubes in the hybrid matrix and the presence of carboxylic groups allowing covalent bonding with the end-siloxane nodes. Potentiodynamic polarization curves and electrochemical impedance spectroscopy results demonstrate that CNTs containing coatings maintain the excellent corrosion protection efficiency of the hybrids, showing even a superior performance in acidic solution. The nanocomposite structure acts as efficient corrosion barrier, increasing the total impedance by 4 orders of magnitude and reducing the current densities by more than 3 orders of magnitude, compared to the bare steel electrode. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Compared with the traditional composites, the incorporation of carbon nanotubes into polymeric matrices can generate materials with superior properties, especially thermal, electrical and tribological properties. The aim of this study was to study the polyamide 6.6/carbon nanotubes (PA 6.6/CNT) nanostructured composites crystallization kinetics. The solution mixing technique was used to obtain the nanostructured composites studied in this work. PA 6.6 films were produced with amounts of 0.1, 0.5, and 1.0 wt% (weight/weight) CNT. X-ray diffraction analyses were performed in order to determine the crystallographic properties of nanostructured composite. The nanostructured composites crystallization kinetic study was performed using the differential scanning calorimetry under isothermal and nonisothermal (dynamic) conditions. The results have shown addition of CNTs in the PA 6.6 reduces the Avrami exponent, affecting the crystallization process of the composite. © The Author(s) 2012.
Resumo:
An a-C:H thin film deposited by plasma immersion ion implantation and deposition on alloy steel (16MnCr5) was analyzed using a self-consistent ion beam analysis technique.In the self-consistent analysis, the results of each individual technique are combined in a unique model, increasing confidence and reducing simulation errors.Self-consistent analysis, then, is able to improve the regular ion beam analysis since several analyses commonly used to process ion beam data still rely on handling each spectrum independently.The sample was analyzed by particle-induced x-ray emission (for trace elements), elastic backscattering spectrometry (for carbon), forward recoil spectrometry (for hydrogen) and Rutherford backscattering spectrometry (for film morphology).The self-consistent analysis provided reliable chemical information about the film, despite its heavy substrate.As a result, we could determine precisely the H/C ratio, contaminant concentration and some morphological characteristics of the film, such as roughness and discontinuities.© 2013 Elsevier B.V.All rights reserved.
Resumo:
This study aimed to investigate the biodegradation of polypropylene/ poly(hydroxybutyrate-co-hydroxyvalerate) (PP/PHBV) blend (70/30, w/w) films in soil, monitoring the evolution of CO2 using the respirometric method. The polymeric films were incubated at 28°C ± 2°C for 180 days in biometer flasks, and the sequence of biodegradation percentage was PP/PHBV (70/30) > PP, that is, 15% and 0%, respectively. Fourier transform infrared spectroscopy and X-ray diffraction measurements showed that biodegradation occurs in the blend PP/PHBV interphases. Preferentially, the microbial action occurs in the fraction of the biodegradable polymer (PHBV), and it influences the PP fraction morphology, which showed some significant changes in the monomer unit sequences and the organization of the chains. © 2013 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Amorphous SiC(x)N(y) films have been deposited on (100) Si substrates by RF magnetron sputtering of a SiC target in a variable nitrogen-argon atmosphere. The as-deposited films were submitted to thermal anneling in a furnace under argon atmosphere at 1000 degrees C for 1 hour. Composition and structure of unannealed and annealed samples were investigated by RBS and FTIR. To study the electrical characteristics of SiC(x)N(y) films, Metal-insulator-semiconductor (MIS) structures were fabricated. Elastic modulus and hardness of the films were determined by nanoindentation. The results of these studies showed that nitrogen content and thermal annealing affect the electrical, mechanical and structural properties of SiC(x)N(y) films.