355 resultados para Auto-implant
Resumo:
Purpose: It is unknown whether different micro gap configurations can cause different pen-implant bone reactions. Therefore, this study sought to compare the peri-implant bone morphologies of two implant systems with different implant-abutment connections. Materials and Methods: Three months after mandibular tooth extractions in six mongrel dogs, two oxidized screw implants with an external-hex connection were inserted (hexed group) on one side, whereas on the contralateral side two grit-blasted screw implants with an internal Morse-taper connection (Morse group) were placed. on each side, one implant was inserted level with the bone (equicrestal) and the second implant was inserted 1.5 mm below the bony crest (subcrestal). Healing abutments were inserted immediately after implant placement. Three months later, the peri-implant bone levels, the first bone-to-implant contact points, and the width and steepness of the peri-implant bone defects were evaluated histometrically. Results: All 24 implants osseointegrated clinically and histologically. No statistically significant differences between the hexed group and Morse group were detected for either the vertical position for peri-implant bone levels (Morse equicrestal -0.16 mm, hexed equicrestal -0.22 mm, Morse subcrestal 1.50 mm, hexed subcrestal 0.94 mm) or for the first bone-to-implant contact points (Morse equicrestal -2.08 mm, hexed equicrestal -0.98 mm, Morse subcrestal -1.26 mm, hexed subcrestal -0.76 mm). For the parameters width (Morse equicrestal -0.15 mm, hexed equicrestal -0.59 mm, Morse subcrestal 0.28 mm, hexed subcrestal -0.70 mm) and steepness (Morse equicrestal 25.27 degree, hexed equicrestal 57.21 degree, Morse subcrestal 15.35 degree, hexed subcrestal 37.97 degree) of the pen-implant defect, highly significant differences were noted between the Morse group and the hexed group. Conclusion: Within the limits of this experiment, it can be concluded that different microgap configurations influence the size and shape of the peri-implant bone defect in nonsubmerged implants placed both at the crest and subcrestally. INT J ORAL MAXILLOFAC IMPLANTS 2010;25:540-547
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background. Severely resorbed mandibles often present a short band of keratinized tissue associated with a shallow vestibule. As a result, prominent muscle insertions are present, especially in the mental region of the mandible. This case report describes the deepening of the vestibular sulcus in an atrophic mandible by combining free gingival grafts harvested from the palate and a postoperative acrylic resin stent screwed on osseointegrated implants placed at the anterior region of the mandible.Study design. During the second-stage surgery, a split-thickness labial flap was reflected and apically sutured onto the periosteum. Two free gingival grafts were obtained and then sutured at this recipient site. A previously custom-made acrylic stent was then screwed onto the most distally positioned implants. To document the procedure's stability over time, a metal ball was placed in the most apical part of the vestibule and standardized cephalometric radiographs were taken before and 6 months after the procedure. Linear measurements of vestibular depths over the observation time were realized using specific software for radiographic analysis.Results. The proposed technique augmented the band of attached masticatory mucosa, deepened the vestibule and prevented the muscle reinsertion. The difference between the 2 measurements of vestibular depths was 9.39 mm (initial 20.88 mm, final 11.49 mm) after a 6-month postoperative period.Conclusion. The technique, in combination with palatal mucosal graft and use of a postoperative stent, decreased the pull of mentalis muscle and provided a peri-implantally stable soft tissue around implants. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: e7-e14)
Resumo:
The aim of this study was to evaluate the effect of unilateral angular misfit of 100 Km on stress distribution of implant-supported single crowns with ceramic veneering and gold framework by three-dimensional finite element analysis. Two three-dimensional models representing a maxillary section of premolar region were constructed: group 1 (control)-crown completely adapted to the implant and group 2-crown with unilateral angular misfit of 100 Km. A vertical force of 100 N was applied on 2 centric points of the crown. The von Mises stress was used as an analysis criterion. The stress values and distribution in the main maps (204.4 MPa for group 1 and 205.0 MPa for group 2) and in the other structures (aesthetic veneering, framework, retention screw, implant, and bone tissue) were similar for both groups. The highest stress values were observed between the first and second threads of the retention screw. Considering the bone tissue, the highest stress values were exhibited in the peri-implant cortical bone. The unilateral angular misfit of 100 Km did not influence the stress distribution on the implant-supported prosthesis under static loading.
Resumo:
Purpose: This study aimed to evaluate the influence of implants with or without threads representation on the outcome of a two-dimensional finite element (FE) analysis. Materials and Methods: Two-dimensional FE models that reproduced a frontal section of edentulous mandibular posterior bone were constructed using a standard crown/implant/screw system representation. To evaluate the effect of implant threads, two models were created: a model in which the implant threads were accurately simulated (precise model) and a model in which implants with a smooth surface (press-fit implant) were used (simplified model). An evaluation was performed on ANSYS software, in which a load of 133 N was applied at a 30-degree angulation and 2 mm off-axis from the long axis of the implant on the models, The Von Mises stresses were measured. Results: The precise model (1.45 MPa) showed higher maximum stress values than the simplified model (1.2 MPa). Whereas in the cortical bone, the stress values differed by about 36% (292.95 MPa for the precise model and 401.14 MPa for the simplified model), in trabecular bone (19.35 MPa and 20.35 MPa, respectively), the stress distribution and stress values were similar. Stress concentrations occurred around the implant neck and the implant apex. Conclusions: Considering implant and cortical bone analysis, remarkable differences in stress values were found between the models. Although the models showed different absolute stress values, the stress distribution was similar. INT J ORAL MAXILLOFAC IMPLANTS 2009;24:1040-1044
Resumo:
The misfit between prostheses and implants is a clinical reality, but the level that can be accepted without causing mechanical or biologic problem is not well defined. This study investigates the effect of different levels of unilateral angular misfit prostheses in the prosthesis/implant/retaining screw system and in the surrounding bone using finite element analysis. Four models of a two-dimensional finite element were constructed: group I (control), prosthesis that fit the implant; groups 2 to 4, prostheses with unilateral angular misfit of 50, 100, and 200 mu m, respectively. A load of 133 N was applied with a 30-degree angulation and off-axis at 2 mm from the long axis of the implant at the opposite direction of misfit on the models. Taking into account the increase of the angular misfit, the stress maps showed a gradual increase of prosthesis stress and uniform stress in the implant and trabecular bone. Concerning the displacement, an inclination of the system due to loading and misfit was observed. The decrease of the unilateral contact between prosthesis and implant leads to the displacement of the entire system, and distribution and magnitude alterations of the stress also occurred.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: This study evaluated possible publication bias and its related factors in implant-related research over time. Materials and Methods: Articles published in Clinical Implant Dentistry and Related Research, Clinical Oral Implants Research, Implant Dentistry, Journal of Oral Implantology, and The International Journal of Oral & Maxillofacial Implants between 2005 and 2009 were reviewed. Nonoriginal articles were excluded. For each article included, study outcome, extramural funding source, type of study, and geographic origin were recorded. Descriptive and analytic statistics (alpha = .05), including the chi-square test and logistic regression analysis, were performed where appropriate. Results: From a total of 2,085 articles, 1,503 met the inclusion criteria. of the articles analyzed, 1,226 (81.6%), 160 (10.6%), and 117 (7.8%) articles reported positive, negative, and neutral outcomes, respectively. In vitro studies, studies from Asia, and funded animal studies were more likely to report positive outcomes compared to others (P = .02, P < .0001, and P = .009, respectively). Industry-funded studies represented the lowest frequency of positive outcomes versus studies funded by other sources. Conclusions: There were a high number of implant-related studies reporting positive outcomes in the five selected journals. Some selected factors were associated with positive outcome bias. In general, funding was not associated with a positive outcome, except for animal studies. Industry-supported research did not show any association with the publication of positive outcomes. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:1024-1032
Resumo:
The aim of this study was to compare the stress distribution induced by posterior functional loads on conventional complete dentures and implant-retained overdentures with different attachment systems using a two-dimentional Finite Element Analysis (FEA-2D). Three models representative of edentulous mandible were constructed on AutoCAD software; Group A (control), a model of edentulous mandible supporting a complete denture; Group B, a model of edentulous mandible supporting an overdenture over two splinted implants connected with the bar-clip system; Group C, a model of edentuluos mandible supporting an overdenture over two unsplinted impants with the O-ring system. Evaluation was conducted on Ansys software, with a vertical force of 100 N applied on the mandibular left first molar. When the stress was evaluated in supporting tissues, groups B (51.0 MPa) and C (52.6 MPa) demonstrated higher stress values than group A (10.1 MPa). Within the limits of this study, it may be conclued that the use of an attachment system increased stress values; furthermore, the use of splinted implants associated with the bar-clip attachment system favoured a lower stress distribution over the supporting tissue than the unsplinted implants with an O-ring abutment to retain the manibular overdenture.
Resumo:
doi: 10.1111/j.1741-2358.2012.00636.x Hyperbaric oxygen therapy treatment for the fixation of implant prosthesis in oncology patients irradiated Objectives: This study aimed to present a clinical report of an irradiated oncologic patient who underwent hyperbaric oxygen therapy to be rehabilitated with implant-supported prosthesis. Materials and Methods: A 67-year-old man was admitted at Oral Oncology Center (FOA-UNESP) presenting a lesion on the mouth floor. After clinical evaluation, incisional biopsy and histopathological exam, a grade II squamous cell carcinoma was diagnosed. The patient was subjected to surgery to remove the lesion and partial glossectomy. Afterwards, the radiotherapy, in the left/right cervicofacial area of the supraclavicular fossa, was conducted. After 3 years of the surgery, the patient was submitted to hyperbaric oxygen therapy. Then, four implants were installed in patients mandible. Five months later, an upper conventional complete denture and lower full-arch implant-supported prosthesis were fabricated. Conclusion: The treatment resulted in several benefits such as improving his chewing efficiency, swallowing and speech, less denture trauma on the mucosa and improving his self-esteem.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This finite element analysis compared stress distribution on complete dentures and implant-retained overdentures with different attachment systems. Four models of edentulous mandible were constructed: group A (control), complete denture; group B, overdenture retained by 2 splinted implants with bar-clip system; group C, overdenture retained by 2 unsplinted implants with o'ring system; and group D, overdenture retained by 2 splinted implants with bar-clip and 2 distally placed o'ring system. Evaluation was performed on Ansys software, with 100-N vertical load applied on central incisive teeth. The lowest maximum general stress value (in megapascal) was observed in group A (64.305) followed by groups C (119.006), D (258.650), and B (349.873). The same trend occurred it) supporting tissues with the highest stress value for cortical bone. Unsplinted implants associated with the o'ring attachment system showed the lowest maximum stress values among all overdenture groups. Furthermore, o'ring system also improved stress distribution when associated with bar-clip system.
Resumo:
Purpose: The aim of this study was to compare 2 different methods of assessment of implants at different inclinations (90 degrees and 65 degrees)-with a profilometer and AutoCAD software. Materials and Methods: Impressions (n = 5) of a metal matrix containing 2 implants, 1 at 90 degrees to the surface and 1 at 65 degrees to the surface, were obtained with square impression copings joined together with dental floss splinting covered with autopolymerizing acrylic resin, an open custom tray, and vinyl polysiloxane impression material. Measurement of the angles (in degrees) of the implant analogs were assessed by the same blinded operator with a profilometer and through analysis of digitized images by AutoCAD software. For each implant analog, 3 readings were performed with each method. The results were subjected to a nonparametric Kruskal-Wallis test, with P <= .05 considered significant. Results: For implants perpendicular to the horizontal surface of the specimen (90 degrees), there were no significant differences between the mean measurements obtained with the profilometer (90.04 degrees) and AutoCAD (89.95 degrees; P=.9142). In the analyses of the angled implants at 65 degrees in relation to the horizontal surface of the specimen, significant differences were observed (P=.0472) between the mean readings with the profilometer (65.73 degrees) and AutoCAD (66.25 degrees). Conclusions: The degrees of accuracy of implant angulation recording vary among the techniques available and may vary depending on the angle of the implant. Further investigation is needed to determine the best test conditions and the best measuring technique for determination of the angle of the implant in vitro.