55 resultados para AT(2) receptor
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Blockade of central angiotensin receptors with the specific antagonist [Leu8]-ANG II abolished water ingestion and water and sodium excretion induced by infusion of angiotensin II (ANGII) into the lateral ventricle (LV) of rats. The antagonist reduced but did not suppress the salt appetite induced by ANGII infusion. Subcutaneous injection of deoxycorticosterone acetate (DOCA) caused increases in water and 3% NaCl ingestion and decreases in sodium excretion. When central ANGII infusion was combined with peripheral DOCA, the water intake was similar to that induced by ANGII alone and the ingestion of 3% NaCl was increased, whereas sodium excretion was inhibited. When ANGII was infused alone, a detailed temporal analysis of fluid and sodium balance showed a negative balance similar those saline controls that persisted throughout the experiment. Combined administration of ANGII and DOCA induce significant changes in water and sodium balance. Sodium and water maintained a positive balance through out the 8-h experiment. The data support an interaction of central ANGII and DOCA on sodium intake and water and sodium balance. © 1994.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
It is well known that glucocorticoids induce peripheral insulin resistance in rodents and humans. Here, we investigated the structural and ultrastructural modifications, as well as the proteins involved in beta-cell function and proliferation, in islets from insulin-resistant rats. Adult male Wistar rats were made insulin resistant by daily administration of dexamethasone (DEX; 1mg/kg, i.p.) for five consecutive days, whilst control (CTL) rats received saline alone. Structure analyses showed a marked hypertrophy of DEX islets with an increase of 1.7-fold in islet mass and of 1.6-fold in islet density compared with CTL islets (P < 0.05). Ultrastructural evaluation of islets revealed an increased amount of secreting organelles, such as endoplasmic reticulum and Golgi apparatus in DEX islets. Mitotic figures were observed in DEX islets at structural and ultrastructural levels. Beta-cell proliferation, evaluated at the immunohistochemical level using anti-PCNA (proliferating cell nuclear antigen), showed an increase in pancreatic beta-cell proliferation of 6.4-fold in DEX islets compared with CTL islets (P < 0.0001). Increases in insulin receptor substrate-2 (IRS-2), phosphorylated-serine-threonine kinase AKT (p-AKT), cyclin D(2) and a decrease in retinoblastoma protein (pRb) levels were observed in DEX islets compared with CTL islets (P < 0.05). Therefore, during the development of insulin resistance, the endocrine pancreas adapts itself increasing beta-cell mass and proliferation, resulting in an amelioration of the functions. The potential mechanisms that underlie these events involve the activation of the IRS-2/AKT pathway and activation of the cell cycle, mediated by cyclin D(2). These adaptations permit the maintenance of glycaemia at near-physiological ranges.
Noradrenaline and mixed alpha(2)-adrenoceptor/imidazoline-receptor ligands: effects on sodium intake
Resumo:
The effect of noradrenaline, and mixed ligands to alpha(2)-adrenoceptors (alpha(2)-AR) and imidazoline receptors (IR), injected intracerebroventricularly (i.c.v.), on sodium intake of sodium depleted rats, was tested against idazoxan, a mixed antagonist ligand to alpha(2)-AR and IR. The inhibition of sodium intake induced by noradrenaline (80 nmol) was completely reversed by idazoxan (160 and 320 nmol) injected i.c.v. The inhibition of sodium intake induced by mixed ligands to alpha(2)-AR and IR, UK14,304, guanabenz and moxonidine, was antagonized from 50 to 60% by idazoxan i.c.v. The results demonstrate that noradrenaline, a non-ligand for IR, acts on alpha(2)-AR inhibiting sodium intake. The possibility that either alpha(2)-AR or IR mediate the effect of mixed agonists on sodium intake remains an open question. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Proteinase-activated receptor-2 (PAR2) belongs to a novel subfamily of G-protein-coupled receptors with seven-transmembrane domains. This receptor is widely distributed throughout the body and seems to be importantly involved in inflammatory processes. PAR2 can be activated by serine proteases such as trypsin, mast cell tryptase, and bacterial proteases, such as gingipain produced by Porphyromonas gingivalis. This review describes the current stage of knowledge of the possible mechanisms that link PAR2 activation with periodontal disease, and proposes future therapeutic strategies to modulate the host response in the treatment of periodontitis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The presence of tyrosine-phosphorylated proteins was studied in cultured rat pancreatic islets, Immunoblotting performed with total extracts of islets cultured in the presence of 1.8 or 5.6 mM glucose revealed at least three distinct tyrosine-phosphorylated bands (25 kDa, 95 kDa and 165-185 kDa). After 12 h incubation in medium containing 1.8 mM glucose, a pulse exposition to 11 or 22 mM glucose or to 10(-7) M insulin led to a substantial increase in the phosphorylation of all three bands, with no appearance of novel bands. Immunoprecipitation with specific antibodies demonstrated that the signal detected at 95 kDa corresponds to the beta subunit of the insulin receptor (IR) while the band at 165-185 kDa corresponds to the early substrates of the insulin receptor, IRS-1 and IRS-2. Immunoprecipitation with IRS-I or IRS-2 antisera detected their association with the lipid metabolizing enzyme phosphatidylinositol 3-kinase (PI 3-kinase), Thus, this is the first demonstration that elements involved in the insulin-signalling pathway of traditional target tissues are also present in pancreatic islets and are potentially involved in auto- and paracrine-signalling in this organ.
Resumo:
We determined the effects of losartan and CGP42112A (selective ligands of the AT1 and AT2 angiotensin receptors, respectively) and salarasin (a relatively nonselective angiotensin receptor antagonist) on urinary volume and urinary sodium and potassium excretion induced by administration of angiotensin II (ANG II) into the paraventricular nucleus (PVN) of conscious rats. Both the AT1 and AT2 ligands and salarasin administered in the presence of ANG II elicited a concentration-dependent inhibition of urine excretion, but losartan inhibited only 75% of this response. The IC50 for salarasin, CGP42112A, and losartan was 0.01, 0.05, and 6 nM, respectively. Previous treatment with saralasin, CGP42112A and losartan competitively antagonized the natriuretic responses to PVN administration of ANG II, and the IC50 values were 0.09, 0.48, and 10 nM, respectively. The maximum response to losartan was 65% of that obtained with saralasin. Pretreatment with saralasin, losartan, and CGP42112A injected into the PVN caused shifts to the right of the concentration-response curves, but the losartan concentrations were disproportionately greater compared with salarasin or CGP42112A. The IC50 values were 0.06, 0.5, and 7.0 for salarasin, CGP42112A, and losartan, respectively. These results suggest that both AT1 and AT2 receptor subtypes in the PVN are involved in ANG II-related urine, sodium, and potassium excretion, and that the inhibitory responses to AT2 blockade are predominant. Copyright (C) 1999 Elsevier Science B.V.
Resumo:
Proteinase-activated receptor-2 (PAR2) is a G-protein-coupled receptor that mediates cellular responses to extracellular proteinases. Since PAR2 is expressed by oral epithelial cells, osteoblasts, and gingival fibroblasts, where its activation releases interleukin-8, we hypothesized that PAR2 activation may participate in periodontal disease in vivo. We investigated the role of PAR2 activation in periodontal disease in rats. Radiographic and enzymatic (myeloperoxidase) analysis revealed that topical application of PAR2 agonist causes periodontitis but also exacerbates existing periodontitis, leading to significant alveolar bone loss and gingival granulocyte infiltration. Inhibition of matrix metalloproteinase (MMP) and cyclo-oxygenase (COX) decreased PAR2 agonist-induced periodontitis. More specifically, the overexpression of COX-1, COX-2, MMP-2, and MMP-9 in gingival tissues suggests that they are involved in PAR 2-induced periodontitis. In conclusion, PAR2 agonist causes periodontitis in rats through a mechanism involving prostaglandin release and MMP activation. Inhibition of PAR2 may represent a novel approach to modulate host response in periodontitis.
Resumo:
Background: Fibroblasts are now seen as active components of the immune response because these cells express Toll-like receptors (TLRs), recognize pathogen-associated molecular patterns, and mediate the production of cytokines and chemokines during inflammation. The innate host response to lipopolysaccharide (LPS) from Porphyromonas gingivalis is unusual inasmuch as different studies have reported that it can be an agonist for Toll-like receptor 2 (TLR2) and an antagonist or agonist for Toll-like receptor 4 (TLR4). This study investigates and compares whether signaling through TLR2 or TLR4 could affect the secretion of interleukin (IL)-6, IL-8, and stromal derived factor-1 (SDF-1/CXCL12) in both human gingival fibroblasts (HGF) and human periodontal ligament fibroblasts (HPDLF). Methods: After small interfering RNA-mediated silencing of TLR2 and TLR4, HGF and HPDLF from the same donors were stimulated with P. gingivalis LPS or with two synthetic ligands of TLR2, Pam2CSK4 and Pam3CSK4, for 6 hours. IL-6, IL-8, and CXCL12mRNA expression and protein secretion were evaluated by quantitative polymerase chain reaction and enzymelinked immunosorbent assay, respectively. Results: TLR2 mRNA expression was upregulated in HGF but not in HPDLF by all the stimuli applied. Knockdown of TLR2 decreased IL-6 and IL-8 in response to P. gingivalis LPS, or Pam2CSK4 and Pam3CSK4, in a similar manner in both fibroblasts subpopulations. Conversely, CXCL12 remained unchanged by TLR2 or TLR4 silencing. Conclusion: These results suggest that signaling through TLR2 by gingival and periodontal ligament fibroblasts can control the secretion of IL-6 and IL-8, which contribute to periodontal pathogenesis, but do not interfere with CXCL12 levels, an important chemokine in the repair process.
Investigação de polimorfismos no gene do receptor 2 da interleucina 8 em indivíduos com periodontite
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)