128 resultados para ANODIC-STRIPPING VOLTAMMETRY


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A mercury-sensitive chemically modified electrode (CME) based on modified silica gel-containing carbon paste was developed. The functional group attached to the silica gel surface was 3-(2-thiobenzimidazolyl)propyl, which is able to complex mercury ions. This electrode was applied to the determination of mercury(II) ions in aqueous solution. The mercury was chemically preconcentrated on the CME prior to voltammetric determination by anodic stripping in the differential-pulse mode. A calibration graph covering the concentration range from 0.08 to 2 mg l-1 was constructed. The precision for six determinations of 0.122 and 0.312 mg l-1 Hg(II) was 3.2 and 2.9% (relative standard deviation), respectively. The detection limit for a 5-min preconcentration period was 0.013 mg l-1. A study for foreign ions was also made.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ceftazidime is hydrolysed only slowly at pH 10 at room temperature. This is indicated by a small cathodic stripping voltammetric peak obtained at pH 10 at a hanging mercury drop electrode at about -0.6 V which corresponds to the reduction of the hydrolysis product. This peak is enhanced more than tenfold by the addition of poly-L-lysine (PLL) to the electrolyte solution. The optimum accumulation potential is between 0 and -0.1 V: the size of the peak decreases steadily, however, as the accumulation potential is moved to more negative potentials and is about one-sixth the size for accumulation at -0.4 V. Existing knowledge of the organic chemistry of cephalosporins indicates that the accumulation must involve an aminolysis reaction of the unprotonated PLL with the beta-lactam ring of the ceftazidime. The limit of detection (3 sigma) in standard solutions was calculated to be 1 x 10(-10) mol l(-1). The detection limit in buffer solution containing 1% of urine was calculated to be 5 x 10(-9) mol l(-1), i.e. 5 x 10(-6) mol l(-1) in the urine. (C) 1999 Elsevier B.V. B.V. AU rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A sensitive method is described for the determination of cefaclor by cathodic stripping voltammetry at the hanging mercury drop electrode. cefaclor is accumulated at the electrode surface as a mercury salt, which is reduced at -0.67 V. The optimum accumulation potential and accumulation time were +0.15 V and up to 180 s, respectively. Linear calibration graphs were obtained between 3.9 mu g.L-1 to 39 mu g.L-1 and the limit of determination was evaluated to be 1.9 mu g.L-1. The method was applied successfully to the determination of cefaclor in pharmaceutical formulations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cefaclor is not reducible at a mercury electrode, but it can be determined polarographically and by cathodic stripping voltammetry as its initial alkaline degradation product which is obtained in high yield by hydrolysis of cefaclor in Britton-Robinson (B-R) buffer pH 10 at 50 degrees C for 30 min (reduction peak at pH 10, -0.70 V). Differential pulse polarographic calibration graphs are linear up to at least 1 x 10(-4) mol l(-1). Recoveries of 93% of the cefaclor (n = 3) were obtained from urine spiked with 38.6 mu g ml(-1) using this polarographic method with 1 ml urine made up to 10 ml with pH 10 buffer. Using cathodic stripping voltammetry and accumulating at a hanging mercury drop electrode at -0.2 V for 30 s, linear calibration graphs were obtained from 0.35 to 40 mu g ml(-1) cefaclor in B-R buffer pH 10. A relative standard deviation of 4.2% (eta = 5) was obtained, and the limit of detection was calculated to be 2.9 ng ml(-1). Direct determination of cefaclor in human urine (1 ml of urine was made up to 10 ml with pH 10 buffer) spiked to 0.39 mu g ml(-1) was made (recovery 98.6%). (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A highly sensitive adsorptive stripping procedure for trace measurement of the anticancer drug tamoxifen is described. The method is based on controlled adsorptive accumulation of the drug at an electrochemically treated glassy carbon electrode, followed by chronopotentiometric measurement of the surface species. The chronopotentiometric operation effectively addresses the large background contribution inherent to the glassy carbon electrode to yield a detection limit of 4 x 10(-10) M after 4 min preconcentration. The adsorptive stripping response is evaluated with respect to electrode type and conditioning, accumulation potential and lime, stripping current, pH, drug concentration, potential interferences, and other variables. Applicability to urine samples is illustrated. (C) 1997 Elsevier B.V. B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mercury thin films prepared by electrochemical deposition on Pt-Ir alloy and after partial removing of mercury at different temperatures were studied by means of an interferometric surface mapping microscope and by X-ray photoelectronic spectroscopy. Mercury film samples having mercury partially removed by anodic stripping at a potential more positive than the corresponding peak in the voltammogram were also studied using the same techniques. For blank samples the surface topographic studies showed well defined grain boundaries. Mercury film samples when heated up to different temperatures showed as material is removed and that the surface roughness decreases as the temperature increases. For samples heated up to 800 degrees C the surface roughness is approximately the same that for the blank. A model for the interphase of volumetric mercury electrodeposited on a Pt-Ir alloy has been proposed using samples both electrochemically and thermally removed of their Hg coatings. The model includes a layered three-region structure, containing at least two Pt-Hg intermetallics: PtHg4 and PtHg2. A substrate modified region, iridium rich, has also been detected. (C) 1999 Elsevier B.V. S.A. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reduction process of the azo dyes reactive red 120 and reactive green 19 was investigated in B-R buffer pH 2-12 by differential pulse polarography, cyclic voltammetry and controlled potential electrolyse. The reactive red 120 presents two azo groups reducible in a single step of 8 electrons followed by simultaneous reduction of the two clorotriazine groups. The reduction of reactive green 19 is complicated by the presence of azo groups and chlorotriazine moyeties in a non symmetrical molecule. The peaks can be monitored for dyes determination in concentration level up to 1x10(-7) mol/L and 1x10(-9) mol/L using differential pulse polarography or cathodic stripping voltammetry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Turquoise blue 15 (AT15) is a reactive dye widely used in the textile industry to color natural fibers. The presence of these dyes in effluent and industrial wastewater is of considerable interest due ecotoxicological and environmental problems. The electrochemical reduction of this dye has been investigated in aqueous solution using cyclic voltammetry, controlled potential electrolysis and cathodic stripping voltammetry. Optimum conditions for dye discoloration by controlled potential electrolysis use an alkaline medium. Using cathodic stripping voltammetry a linear calibration graph was obtained from 5.00×10-8 mol L-1 to 1.00×10 -6 mol L-1 of AT15 at pH 4.0, using accumulation times of 180 and 240 s and an accumulation potential of 0.0 V. The proposed method was applied in direct determination of the dye in tap water and in textile industry effluent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)