568 resultados para Acrylic resin materials


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bond failures at the acrylic teeth and denture base resin interface are still a common clinical problem in prosthodontics. The effect of methyl methacrylate (MMA) monomer on the bond strength of three types of denture base resins (Acron MC, Lucitone 550 and QC-20) to two types of acrylic teeth (Biotone and Trilux) was evaluated. Twenty specimens were produced for each denture base resin/acrylic tooth combination and were randomly divided into control (acrylic teeth received no surface treatment) and experimental groups (MMA was applied to the surface of the acrylic teeth for 180 s) and were submitted to shear tests (1 mm/mm). Data (MPa) were analyzed using three-way ANOVA/Student's test (alpha = 0.05). MMA increased the bond strength of Lucitone denture base resins and decreased the bond strength of QC-20. No difference was detected for the bond strength of Acron MC base resin after treatment with MMA. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim To evaluate and compare the response of pulps of rats capped with resin-modified glass-ionomer cement (RMGIC) or self-etching adhesive system.Methodology Class I cavities were prepared on the occlusal surface of 54 maxillary first molars of 27 rats. Pulp exposure was performed on the cavity floor. The following resin-based materials were applied as pulp-capping agents: G1, Clearfil Liner Bond 2V (CLB 2V; Kuraray Co., Japan); G2, Vitrebond (VIT; 3M/ESPE, USA). In group 3 (control group), a calcium hydroxide/saline paste (CH; Labsynth, Brazil) was used. The cavities were restored with amalgam. After 7, 30 and 60 days, the animals were sacrificed and the jaws were processed for microscopic evaluation.Results Despite the inflammatory response caused by the experimental and the control materials at 7 days, pulpal healing associated with calcified barrier formation was observed at 60 days following the pulp therapy. Both resin-based materials promoted a large zone of cell-rich fibrodentine matrix deposition on the pulp horn related to the pulp exposure site, which was larger to VIT than to CLB 2V specimens. Tertiary dentine underneath the fibrodentine matrix was deposited by a layer of elongated pulpal cells. The remaining pulpal tissue exhibited normal histological characteristics. In the control group, healing and dentine-bridge formation was observed at 30 days. Pulpal breakdown occurred only when bacterial infection occurred.Conclusion Both experimental pulp-capping agents allowed pulpal healing characterized by cell-rich fibrodentine and tertiary dentine deposition as well as calcified barrier formation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives: To evaluate the effect of microwave disinfection on the flexural strength and Vickers hardness of 4 autopolymerized resins (Kooliner [K], Tokuso Rebase Fast [T], Ufi Gel Hard [U], and New Truliner [N]) and 1 denture base resin (Lucitone 550 [L]). Method and Materials: For each material, 48 specimens (64 x 10 x 3.3 mm) were made and divided into 6 equal groups (n = 8). In the control group, specimens were untreated. Before testing, specimens were immersed in 200 mL of distilled water and submitted to disinfection for 1 of the following irradiation times: 1, 2, 3, 4, or 5 minutes. The irradiation procedure was performed twice. The flexural strength was determined using a testing machine MTS-810 and measurements of Vickers hardness were made on Micromet 2100. The values were submitted to ANOVA and Tukey's test (P = .05). Results: The K material showed a significant increase (P = .0010) in flexural strength following 5 minutes of disinfection compared to control specimens. The flexural strength mean values of materials T, U, and N were not significantly affected (P > .05) by disinfection. Compared to the control group, the K material showed a significant increase in hardness (P < .001) following disinfection for 3, 4, and 5 minutes. For material U, disinfection for 4 and 5 minutes produced specimens with significantly increased hardness values (P < .001) compared to the control group. For material N, disinfection for 5 minutes resulted in significantly higher hardness values (P < .001) than the control group. Conclusion: Regardless of the irradiation time, the flexural strength and hardness of the materials evaluated were not detrimentally affected by microwave disinfection. (Quintessence Int 2008;39:833-840)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microwave energy has proved to be an effective method for disinfecting acrylic dentures. However, the effect of microwave heating on the porosity of autopolymerising denture reline resins has not been investigated.The purpose of the study was to determine the effect of microwave disinfection on the porosity of autopolymerised denture reline materials (Kooliner-K, New Truliner-NT, Tokuso Rebase Fast-TR and Ufi Gel Hard-UGH) and a conventional heat-polymerised denture base resin (Lucitone 550-L).Specimens (10 mm x 20 mm x 1 mm) were obtained from the impression surface of the palatal mucosa in a single person and divided into four groups (n = 5). The porosity was evaluated after polymerisation (C1), after two cycles of microwave disinfection (MW2), after seven cycles of microwave disinfection (MW7) and after 7 days storage in water at 37 degrees C (C2). Specimens from group MW7 were exposed to microwave disinfection daily being stored in water at 37 degrees C between exposures. All the replicas were sputter coated with gold and micrographs/digital images were taken of each replica using scanning electron microscopy at magnification x 100. The SEM micrographs were then examined using an image analyser to determine the number of pores. Comparison between materials and groups were made using Kruskal-Wallis tests.MW7 resulted in a significant increase in the number from the pores of material K, but decreased in number in reline material TR and UGH reline resin. The number of pores in materials NT and L remained unaffected following microwave disinfection.Differences in the porosity amongst the materials and for different experimental conditions were observed following microwave disinfection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Secondary caries is the main cause of direct restoration replacement. The purpose of this study was to analyze enamel adjacent to different restorative materials after in situ cariogenic challenge using polarized-light microscopy (PLM), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDS). Twelve volunteers, with a low level of dental plaque, a low level of mutans streptococci, and normal salivary flow, wore removable palatal acrylic appliances containing enamel specimens restored with Z250 composite, Freedom composite, Fuji IX glass-ionomer cement, or Vitremer resin-modified glass-ionomer for 14 days. Volunteers dripped one drop of 20% sucrose solution (n = 10) or distilled water (control group) onto each specimen 8 times per day. Specimens were removed from the appliances and submitted to PLM for examination of the lesion area (in mm(2)), followed by dehydration, gold-sputtering, and submission to SEM and EDS. The calcium (Ca) and phosphorus (P) contents were evaluated in weight per cent (%wt). Differences were found between Z250 and Vitremer, and between Z250 and FujiIX, when analyzed using PLM. Energy-dispersive X-ray analysis results showed differences between the studied materials regarding Ca %wt. In conclusion, enamel adjacent to glass-ionomer cement presented a higher Ca %wt, but this material did not completely prevent enamel secondary caries under in situ cariogenic challenge.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To evaluate the cohesive strength between composite and different light-curing characterizing materials (LCCM), which were prepared using the intrinsic technique.Materials and Methods: One hundred composite specimens were made by using a prefabricated Teflon device, and a layer of LCCM was applied at the interface. The specimens were divided into 5 groups (n = 20): group 1 (control), no LCCM was used; group 2: application of White Kolor Plus Pigment (Kerr) LCCM; group 3: White Tetric Color Pigment (Ivoclar/Vivadent) LCCM; group 4: Brown Kolor Plus Pigment (Kerr) LCCM; group 5: Black Tetric Color Pigment (Ivoclar/Vivadent) LCCM. All materials were used according to the manufacturers' instructions. Specimens were submitted to a tensile test in a universal testing machine (EMIC DL-200MF) to evaluate the cohesive strength at the composite interface. Data were subjected to one-way ANOVA and Tukey's test (alpha = 5%).Results: ANOVA showed a p-value = 0.0001, indicating that there were significant differences among the groups. The mean values in MPa (+/- standard deviation) obtained for the groups were: G1: 28.5 (+/-2.74)a; G2: 23.5 (+/-2.47)b; G3: 20.3 (+/-2.49)b; G4: 10.5 (+/-2.40)c; G5: 9.66 (+/-3.06)c. The groups with the same letters presented no significant differences. The control group presented statistically significantly higher cohesive strengths when compared to the other groups. The groups in which Brown Kolor Plus Pigment and Black Tetric Color Pigment LCCM were used showed significantly lower cohesive strengths when compared to the groups in which White Kolor Plus Pigment and White Tetric Color Pigment LCMM were used.Conclusion: The use of LCCM produced with the intrinsic technique reduced the cohesive strength of composite.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acrylic resins are widely used in the fabrication of denture bases and have been shown to be cytotoxic as a result of substances that leach from the resin. The primary eluate is residual monomer. Numerous reports suggest that residual monomer may be responsible for mucosal irritation and sensitization of tissues. This information is important, not only to assess the biologic effects of such materials, but also to enable a comparison among the different polymerization methods, thus assisting the clinician in selecting a material with minimal cytotoxicity. This article reviews the literature published from 1973 to 2000, selected by use of a Medline search, associated with cytotoxic effects usually ascribed to acrylic denture base materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: the purpose of this study was to evaluate the effectiveness of various surface treatments for resin-modified glass-ionomer restorative materials by determining dye uptake spectrophotometrically. Method and materials: Two hundred twenty-four specimens, 4.1 mm in diameter and 2.0 mm thick, were made of 3 materials: Vitremer, Fuji II LC, and Photac-Fil Aplicap. Specimens were divided into 15 groups. The positive and negative control specimens remained unprotected, while the experimental specimens were protected with Heliobond light-activated bonding resin, Colorama nail varnish, or surface coatings indicated by the manufacturers of the glass-ionomer materials. Finishing Gloss for Vitremer, Fuji Varnish for Fuji II LC, and Ketac Glaze for Photac-Fil. The disks were immersed in 0.05% methylene blue for 24 hours except for the negative control group, which was immersed in deionized water. After 24 hours, the disks were removed, washed, and individually placed in 1 mL of 65% nitric acid for 24 hours. The solutions were centrifuged and the spectrophotometric absorbance was determined at 606 nm. The dye uptake was expressed in micrograms of dye per milliliter, and the results were analyzed with the Kruskal-Wallis test. Results: There were no differences in dye uptake among the 3 resin-modified glass-ionomer restorative materials, however, all of them required surface protection. Conclusion: the best surface protection for the 3 evaluated materials was obtained with Heliobond light-activated bonding resin.