345 resultados para essential oil malnourished rats
Resumo:
Propolis (bee glue) is one of the major hive products of bees and is rich in flavonoids, which are known for their antioxidant activities. The aim of this study was to evaluate the hepatoprotective effects of the ethanolic extract of propolis (EEP) against experimental carbon tetrachloride (CCl 4)-induced liver toxicity in rats by means of biochemical indices. The animals were divided into 4 groups: GI= received mineral oil; GII= CCl 4(4mL/kg; Lp., single dose) treated; GIII= CCl4 (4mL/kg; i.p., single dose) treatment followed by ethanolic extract of propolis (100mg/kg) for gavage from the species Tetragonisca angustula, daily for 3 days and GIV= CCl4 (4mL/kg; i.p., single dose) treatment followed by ethanolic extract of propolis (100mg/kg) for gavage from the species Nannotrigonea testaceicornes, daily, for 3 days. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), cholesterol and triacylglycerols were estimated after 3 days. CCl 4 caused a maximum increase (p<0,01) above biochemical parameters. As compared to CCl4 group (GII), the EEP (GIII and GIV) showed reduction in cholesterol, triacylglycerol, ALT, AST and alkaline phosphatase activity in the serum. In conclusion, these data indicate that EEP improved the dyslipidaemia, moreover, significantly attenuated increases in serum ALT and AST activities in rats with liver damage induced by carbon tetrachloride.
Resumo:
Recent lines of evidence suggest that the beneficial effects of olive oil are not only related to its high content of oleic acid, but also to the antioxidant potential of its polyphenols. The aim of this work was determine the effects of olive oil and its components, oleic acid and the polyphenol dihydroxyphenylethanol (DPE), on serum lipids, oxidative stress, and energy metabolism on cardiac tissue. Twenty four male Wistar rats, 200 g, were divided into the following 4 groups (n = 6): control (C), OO group that received extra-virgin olive oil (7.5 mL/kg), OA group was treated with oleic acid (3.45 mL/kg), and the DPE group that received the polyphenol DPE (7.5 mg/kg). These components were administered by gavage over 30 days, twice a week. All animals were provided with food and water ad libitum The results show that olive oil was more effective than its isolated components in improving lipid profile, elevating high-density lipoprotein, and diminishing low-density lipoprotein cholesterol concentrations. Olive oil induced decreased antioxidant Mn-superoxide dismutase activity and diminished protein carbonyl concentration, indicating that olive oil may exert direct antioxidant effect on myocardium. DPE, considered as potential antioxidant, induced elevated aerobic metabolism, triacylglycerols, and lipid hydroperoxides concentrations in cardiac muscle, indicating that long-term intake of this polyphenol may induce its undesirable pro-oxidant activity on myocardium. © 2006 NRC Canada.
Resumo:
The suprachiasmatic nucleus, an essential diencephalic component of the circadian timing system, plays a role in the generation and modulation of behavioral and neuroendocrine rhythms in mammals. Its cytoarchitecture, neurochemical and hodological characteristics have been investigated in various mammalian species, particularly in rodents. In most species, two subdivisions, based on these aspects and considered to reflect functional specialization within the nucleus, can be recognized. Many studies reveal a typical dense innervation by serotonergic fibers in this nucleus, mainly in the ventromedial area, overlapping the retinal afferents. However, a different pattern occurs in certain animals, which lead us to investigate the distribution of serotonergic afferents in the suprachiasmatic nucleus of the Capuchin monkey, Cebus apella, compared to the marmoset, Callithrix jacchus, and two Rattus norvegicus lines (Long Evans and Wistar), and to reported findings for other mammalian species. Our morphometric data show the volume and length of the suprachiasmatic nucleus along the rostrocaudal axis to be greatest in C. apella > C. jacchus > Long Evans ≥ Wistar rats, in agreement with their body sizes. In C. apella, however, the serotonergic terminals occupy only some 10% of the nucleus' area, less than the 25% seen in the marmoset and rats. The distribution of the serotonergic fibers in C. apella does not follow the characteristic ventral organization pattern seen in the rodents. These findings raise questions concerning the intrinsic organization of the nucleus, as well as regarding the functional relationship between serotonergic input and retinal afferents in this diurnal species. © 2007 Elsevier B.V. All rights reserved.
Resumo:
The level of stress during acute or chronic exercise is important since higher levels of stress may impair homeostasis. The adrenal gland is an essential stress-responsive organ involved in the hypothalamic-pituitary-adrenal axis. The aim of the study was to analyze the sensitivity of different stress biomarkers of the adrenal gland during acute treadmill running at different intensities. Adult rats performed three 25 min running tests at velocities of 15, 20 and 25 m/min, for determination of maximum lactate steady state (MLSS). After obtaining individual MLSS animals were assigned to two groups: M, sacrificed after 25 minutes of exercise at MLSS, and AM, sacrificed after exercise at 25% above MLSS. For comparison, a control group C was sacrificed at rest. Blood corticosterone concentrations, as well, adrenal gland cholesterol and ascorbic acid concentrations were used as biomarkers. Serum corticosterone concentrations were higher after exercise in both M (1802,74±700,42) and AM (2027,96±724,94) groups when compared C group (467,11±262,12), but were not different as a function of exercise intensity. No difference in adrenal ascorbic acid (M=2,37±0,66; AM=2,11±0,50 and C=2,54±0,53) and cholesterol (M=1,04±0,12; AM=0,91±0,31 and C=1,15±0,40) levels were observed when the three groups were compared. Serum corticosterone concentrations showed to be sensitive to acute treadmill exercise intensity. On the other hand, ascorbic acid and cholesterol concentrations in adrenal were biomarkers not adequate to evaluate exercise stress in rats.
Resumo:
New Findings: • What is the central question of this study? The main purpose of the present manuscript was to investigate the cardiorespiratory responses to hypoxia or hypercapnia in conscious rats submitted to neuronal blockade of the parafacial region. We clearly showed that the integrity of parafacial region is important for the respiratory responses elicited by peripheral and central chemoreflex activation in freely behavior rats. • What is the main finding and its importance? Since the parafacial region is part of the respiratory rhythm generator, they are essential for postnatal survival, which is probably due to their contribution to chemoreception in conscious rats. The retrotrapezoid nucleus (RTN), located in the parafacial region, contains glutamatergic neurons that express the transcriptor factor Phox2b and that are suggested to be central respiratory chemoreceptors. Studies in anaesthetized animals or in vitro have suggested that RTN neurons are important in the control of breathing by influencing respiratory rate, inspiratory amplitude and active expiration. However, the contribution of these neurons to cardiorespiratory control in conscious rats is not clear. Male Holtzman rats (280-300 g, n= 6-8) with bilateral stainless-steel cannulae implanted into the RTN were used. In conscious rats, the microinjection of the ionotropic glutamatergic agonist NMDA (5 pmol in 50 nl) into the RTN increased respiratory frequency (by 42%), tidal volume (by 21%), ventilation (by 68%), peak expiratory flow (by 24%) and mean arterial pressure (MAP, increased by 16 ± 4, versus saline, 3 ± 2 mmHg). Bilateral inhibition of the RTN neurons with the GABAA agonist muscimol (100 pmol in 50 nl) reduced resting ventilation (52 ± 34, versus saline, 250 ± 56 ml min-1 kg-1 with absolute values) and attenuated the respiratory response to hypercapnia and hypoxia. Muscimol injected into the RTN slightly reduced resting MAP (decreased by 13 ± 7, versus saline, increased by 3 ± 2 mmHg), without changing the effects of hypercapnia or hypoxia on MAP and heart rate. The results suggest that RTN neurons activate facilitatory mechanisms important to the control of ventilation in resting, hypoxic or hypercapnic conditions in conscious rats. © 2012 The Authors. Experimental Physiology © 2012 The Physiological Society.
Resumo:
Exposure to environmental chemicals may contribute to reproductive disorders, especially when it occurs in critical periods of development. The female reproductive system can be a target for androgens derived from environmental contaminants or pathological conditions. The purpose of this study was to assess the long-term effects of androgens on uterine tissue after maternal exposure limited to the time of gestation and lactation. Pregnant Wistar rats were treated with testosterone propionate (TP) at 0.05. mg/kg, 0.1. mg/kg, 0.2. mg/kg or corn oil (vehicle), s.c., from gestational day 12 until the end of lactation. The results show changes in the pattern of expression of receptors for estrogen, progesterone, and androgen at all doses tested, and decreases in both apoptosis and cell proliferation indices at 0.1 and 0.2. mg/kg. We conclude that early TP exposure, under these experimental conditions, causes changes in cellular and molecular parameters that are essential for normal uterine function in the adult. © 2013 Elsevier Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The involvement of glutamatergic neurotransmission in the rostral ventrolateral medulla/Bötzinger/pre-Bötzinger complexes (RVLM/BötC/pre-BötC) on the respiratory modulation of sympathoexcitatory response to peripheral chemoreflex activation (chemoreflex) was evaluated in the working heart-brain stem preparation of juvenile rats. We identified different types of baro- and chemosensitive presympathetic and respiratory neurons intermingled within the RVLM/BötC/pre-BötC. Bilateral microinjections of kynurenic acid (KYN) into the rostral aspect of RVLM (RVLM/BötC) produced an additional increase in frequency of the phrenic nerve (PN: 0.38 ± 0.02 vs. 1 ± 0.08 Hz; P < 0.05; n = 18) and hypoglossal (HN) inspiratory response (41 ± 2 vs. 82 ± 2%; P < 0.05; n = 8), but decreased postinspiratory (35 ± 3 vs. 12 ± 2%; P < 0.05) and late-expiratory (24 ± 4 vs. 2 ±1%; P < 0.05; n = 5) abdominal (AbN) responses to chemoreflex. Likewise, expiratory vagal (cVN; 67 ± 6 vs. 40 ± 2%; P < 0.05; n = 5) and expiratory component of sympathoexcitatory (77 ± 8 vs. 26 ± 5%; P < 0.05; n = 18) responses to chemoreflex were reduced after KYN microinjections into RVLM/BötC. KYN microinjected into the caudal aspect of the RVLM (RVLM/pre-BötC; n = 16) abolished inspiratory responses [PN (n = 16) and HN (n = 6)], and no changes in magnitude of sympathoexcitatory (n = 16) and expiratory (AbN and cVN; n = 10) responses to chemoreflex, producing similar and phase-locked vagal, abdominal, and sympathetic responses. We conclude that in relation to chemoreflex activation 1) ionotropic glutamate receptors in RVLM/BötC and RVLM/pre-BötC are pivotal to expiratory and inspiratory responses, respectively; and 2) activation of ionotropic glutamate receptors in RVLM/BötC is essential to the coupling of active expiration and sympathoexcitatory response.