431 resultados para Oxide precursor method
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work, we report on the synthesis of MgMoO4 crystals by oxide mixed method. The powder was calcined at 1100 degrees C for 4h and analyzed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Field emission gun scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and Photoluminescence (PL) measurement. XRD analyses revealed that the MgMoO4 powders crystallize in a monoclinic structure and are free secondary phases. UV-vis technique was employed to determine the optical band gap of this material. MgMoO4 crystals exhibit an intense PL emission at room temperature with maximum peak at 579 nm (yellow region) when excited by 350 nm wavelength at room temperature.
Resumo:
Eletronicalceramics are used in many applications such as: multilayer capacitor, transducer, pyroelectric sensors and electrooptic devices. In recent years there has been a growing demand for eletronicalceramics with better performance and functionality. This demand has accelerated the development of synthesis techniques to produce powders with well-defined particle size, shape and crystallinity. The eletronicalceramics in the form of bulk are determined by their performance characteristics of the powders used and the preparation process. So, physical and chemical properties of powders, such as chemical control of stoichiometry, purity, homogeneity, particle size and shape should be observed when choosing the methods of synthesis. Among the techniques used so far, the polymeric precursor method, also known as Pechini, has been considered ideal for the preparation of nanosized powders. Thus, this research project aims to use the polymeric precursor method to prepare powders of lithium tantalate and lanthanum tantalate, with good chemical stability. In this aspect is proposed to investigate the effects of variation of the concentration of europium about the properties of tantalate because doping with Eu3 + indicates that they may occupy different sites in the crystal structure, as in the case of LiTaO3. Effects of things like occupation sites, stability of phases and formation temperature have been previously investigated by the group, which motivated the formulation of this project. Our proposal aims to introduce the Eu3 + LaTaO4 and LiTaO3 and study the structural and optical properties of the powders obtained by Pechini method, as well as correlate these studies with the electrical properties of the material, mainly the Ironelectricty Hysteresis.
Resumo:
Crystallographic and microstructural properties of Ho(Ni,Co,Mn)O3± perovskite-type multiferroic material are reported. Samples were synthesized with a modified polymeric precursor method. The synchrotron X-ray powder diffraction (SXRPD) technique associated to Rietveld refinement method was used to perform structural characterization. The crystallographic structures, as well as microstructural properties, were studied to determine unit cell parameters and volume, angles and atomic positions, crystallite size and strain. X-ray energies below the absorption edges of the transition metals helped to determine the mean preferred atomic occupancy for the substituent atoms. Furthermore, analyzing the degree of distortion of the polyhedra centered at the transitions metal atoms led to understanding the structural model of the synthesized phase. X-ray photoelectron spectroscopy (XPS) was performed to evaluate the valence states of the elements, and the tolerance factor and oxygen content. The obtained results indicated a small decrease distortion in structure, close to the HoMnO3 basis compound. In addition, the substituent atoms showed the same distribution and, on average, preferentially occupied the center of the unit cell.
Resumo:
Semiconductor-mediated photocatalytic oxidation is an interesting method for water decontamination and a specially modified TiO2 is said to be a promising material. This study verified that the synthesis of 1wt%Ag modified-Sc0.01Ti0.99O1.995 powder samples prepared by Polymeric Precursor Method is capable of forming a mixture of anatase-rutile phase with high photocatalytic performance. This kind of material is found to have a lower bandgap compared to the TiO2-anatase commercial powders, which can be associated to an innovative hybrid modification. The simultaneous insertion of scandium in order to generate a p-type semiconductor and a metallic silver nanophase acting as an electron trapper demonstrated being capable of enhancing the degradation of rhodamine B compared to the commercial TiO2. In spite of the different thermal treatments or phase amounts, the hybrid modified powder samples showed higher photocatalytic activity than the commercial ones.
Resumo:
Pure yttrium oxide or mixed with europium oxide (3 at%) were treated in supercritical isopropanolic suspension at 500degreesC for 20 It and filling degree of 50%. Products were supercritically dried and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), infrared spectroscopy (IR) and luminescence spectroscopy (LS). Particle shape is irregular with an equivalent diameter of ca. 5 mum. Cubic crystalline phase is mainly obtained and hydroxide ion in low concentration is detected by IR vibrational spectrum. Europium in this concentration does not extensively change such observed characteristics from the pure yttrium oxide. Luminescence spectra show that the doped product is a mixture of the two oxides added by oxyhydroxide impurities. Nevertheless, this precursor sample, after being heated at 900degreesC during 1 h, has all characteristics, especially luminescent ones, of the P22 commercial phosphor. (C) 2003 Elsevier B.V. (USA). All rights reserved.
Resumo:
Zinc oxide (ZnO) is an electroluminescent (EL) material that can emit light in different regions of electromagnetic spectrum when electrically excited. Since ZnO is chemically stable, inexpensive and environmentally friendly material, its EL property can be useful to construct solid-state lamps for illumination or as UV emitter. We present here two wet chemical methods to prepare ZnO thin-films: the Pechini method and the sol-gel method, with both methods resulting in crystalline and transparent films with transmittance > 85% at 550 nm. These films were used to make thin-film electroluminescent devices (TFELD) using two different insulator layers: lithium fluoride (LiF) or silica (SiO2). All the devices exhibit at least two wide emission bands in the visible range centered at 420 nm and at 380 nm attributed to the electronic defects in the ZnO optical band gap. Besides these two bands, the device using SiO2 and ZnO film obtained via sol-gel exhibits an additional band in the UV range centered at 350 nm which can be attributed to excitonic emission. These emission bands of ZnO can transfer their energy when a proper dopant is present. For the devices produced the voltage-current characteristics were measured in a specific range of applied voltage. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work, zinc oxide samples were obtained from hydroxycarbonate by thermal decomposition at 300°C. Zinc hydroxycarbonate samples were produced by homogeneous precipitation over different periods of time. The method used to obtain zinc oxide produces different morphologies as a function of the precursor precipitation time. Among the obtained particle shapes were porous spherical aggregates, spherulitic needle aggregates, and single acicular particles. This work investigated spherulitic needle-aggregate formation and the correlation among morphology, domain size, and microstrain. Transmission electron microscopy data revealed that the acicular particles that form the spherulitic needle aggregates consist of nanometer crystallites. Apparent crystallite size and microstrain in the directions perpendicular to (h00), (h0l), (hk0), and (00l) planes were invariable as a function of precursor precipitation time. From the results, it was possible to conclude that the precursor precipitation period directly influenced the morphology of the zinc oxide but did not influence average crystallite size and microstrain for ZnO samples. Therefore, using this route, it was possible to prepare zinc oxide with different morphologies without microstructural alterations. © 2001 International Centre for Diffraction Data.
Resumo:
This work describes the influence of the preparation method and the carbon support using a low contentof cerium oxide nanoparticles (CeO2/C 4%) on H2O2electrogeneration via the oxygen reduction reac-tion (ORR). For this purpose, the polymeric precursor (PPM) and sol-gel (SGM) methods with Vulcan XC72R (V) and Printex L6 (P) supports were employed. The materials were characterized by X-ray diffrac-tion (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). TheXRD analysis identified two phases comprising CeO2and CeO 2-x. The smallest mean crystallite size wasexhibited for the 4% CeO2/C PPM P material, which was estimated using the Debye-Scherrer equation tobe 6 nm and 4 nm for the CeO2and the CeO 2-xphases, respectively, and was determined by TEM to be5.9 nm. XPS analysis was utilized to compare the oxygen content of the 4% CeO2/C PPM P to Printex L6.The electrochemical analysis was accomplished using a rotating ring-disk electrode. The results showedthat the 4% CeO2/C specimen, prepared by PPM and supported on Printex L6, was the best electrocatalystfor H2O2production in 1 mol L -1NaOH. This material showed the highest ring current, producing 88%H2O2and transferring 2.2 electrons per O 2molecule via the ORR at the lowest onset potential. Addition-ally, the ring-current of the 4% CeO2/C PPM P material was higher than that of Vulcan XC 72R and PrintexL6, the reference materials for H2O 2production, indicating the highest electrocatalytic activity for the 4%CeO2/C PPM P material. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Barium zirconium titanate (BZT) ceramics were prepared by mixed oxide method. X-ray diffraction showed the presence of a single phase while Raman scattering confirmed structural transitions as a function of different Zr/Ti ratio. The addition of Zr strongly influenced the crystal structure and electrical properties of the ceramics. A typical hysteresis loops were observed for all investigated compositions. BZT ceramics with 15 mol% Zr have shown a ferroelectric to paraelectric transition at around 77 degrees C. (C) 2007 Published by Elsevier B.V.
Resumo:
Precursor solutions for Pb(Mg1/3Nb2/3)O-3 (PMN) synthesis were obtained by Pechini's method. The influence of the concentration of organic materials on the phase formation has been studied. For this purpose, PMN solutions were prepared with different precursors and were characterized by thermogravimetric and differential thermal analysis. The obtained solutions were deposited onto a Si (100) substrate by dip coating and pre-treated in a hot plate at 300 degreesC for 1 h. The films were annealed at 600, 700, 800 and 900 degreesC for 1 h and characterized by X-ray diffraction. The perovskite phase was formed after annealing at 600 and 700 degreesC when the solution of PMN was prepared with a lower amount of organic material and starting with mobium oxide. By increasing the temperature to 800 or 900 degreesC, only the formation of pyrochlore phase was observed. With the solution prepared from mobium ethoxide, only the presence of pyrochlore phase was observed independently of the annealing temperature. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Vanadium modified barium zirconium titanate ceramics Ba(Zr(0.10)Ti(0.90))O(3):2V (BZT:2V) were prepared from the mixed oxide method. According to X-ray diffraction analysis, addition of vanadium leads to ceramics free of secondary phases. Electrical characteristics reveal a dielectric permittivity at around 15,000 with low dielectric loss with a remnant polarization (P(r))of 8 mu C/cm(2) at 2 kV/cm. From the obtained results, we assume that vanadium substitution in the BZT lattice affects dielectric characteristics due to the electron-relaxation-mode in which carriers (polarons, protons, and so on) are coupled with existing dielectric modes. (C) 2009 Published by Elsevier B.V.