92 resultados para stripping chronopotentiometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method was developed for the differential-pulse cathodic stripping voltammetric determination of ceftazidime with a hanging mercury drop electrode using its reduction peak at -0.43 V in Britton-Robinson buffer pH 4.0. The optimum accumulation potential and time were -0.15 V and up to 60 s, respectively. Linear calibration graphs were obtained from 1 x 10(-8) M and 1.5 x 10(-7) M. The limit of determination was calculated to be 5 x 10(-9) M. The coefficient of variation was 4% (n = 7) at 1 x 10(-7) M ceftazidime. The effect of various components of urine on the voltammetric response was studied, and creatinine, uric acid, urea, and glucose were shown to interfere in the method. Ceftazidime bound to human albumin gives a unique stripping peak at -0.48 V. Recoveries of 87% +/- 2% of the ceftazidime (n = 5) were obtained from urine spiked with 1.27 mu g ml(-1) using C-18 solid phase extraction cartridges. (C) 1997 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of the voltammetric behaviour of the food colours brilliant blue FCF (C.I. 42090), erythrosine (C. I. 45430) and quinolin e yellow (C. I. 47005) in the pH range 2-10 have been carried out by cathodic stripping voltammetry. At pH 4.5 (acetate buffer) with an accumulation potential of 0 V and accumulation time of 30 s, the voltammograms presented well-defined reduction peaks at potential - 0.76 V for brilliant blue FCF, - 0.85 V for quinoline yellow and - 0.54 V for erythrosine. Linear calibration graphs were obtained from 8 to 80 mug l(-1) brilliant blue, from 4 to 43 mug l(-1) quinoline yellow and from 10 to 70 mug l(-1) erythrosine. The method has been successfully applied to identify and quantify binary mixtures of these dyes and applied for determining brilliant blue FCF in commercial food products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Procion red HE-3B (RR120) is an example of dye currently used in affinity purification. A method is described for determining trace amounts of RR120 dye contaminant in human serum albumin by cathodic stripping voltammetry. The method is based on a measure of a well-defined peak at -0.58 V, obtained when samples of HSA protein (0.01-2% w/v) containing dye concentrations are submitted to a heating time of 330 min at 80degreesC in NaOH, pH 12.0 and the samples are removed to a solution containing Britton-Robinson buffer, pH 4.0. Using an optimum accumulation potential and tune of 0 V and 240 s, respectively, linear calibration curves were obtained from 1.0 X 10(-9) to 1.0 X 10(-8) mol 1(-1) for RR120 dye. Leakage/hydrolysis of reactive red 120 from an agarose support (e.g. at pH 2 or 12) can also be conveniently determined at very low levels (sub-mug ml(-1)) by means of cathodic stripping voltammetry, which involves adsorptive accumulation of the dye onto the hanging mercury-drop electrode. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At accumulation potentials close to +0.1 V at a hanging mercury drop electrode, ceftazidime is accumulated at pH 9.5, probably in a hydrolysed or otherwise chemically altered form, in an anodic process to give an adsorbed mercury salt. The accumulation of this mercury salt allows the indirect cathodic-stripping voltammetric determination of ceftazidime using the reduction peak of the mercury salt at -0.70 V. The high sensitivity of the method coupled with high sample dilution allows ceftazidime to be determined in milk samples at the 28 mu g ml(-1) level without prior separation. In order to determine lower levels of ceftazidime in milk (ca. 10 ng ml(-1)) a separation process would be required. (C) 1998 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceftazidime is hydrolysed only slowly at pH 10 at room temperature. This is indicated by a small cathodic stripping voltammetric peak obtained at pH 10 at a hanging mercury drop electrode at about -0.6 V which corresponds to the reduction of the hydrolysis product. This peak is enhanced more than tenfold by the addition of poly-L-lysine (PLL) to the electrolyte solution. The optimum accumulation potential is between 0 and -0.1 V: the size of the peak decreases steadily, however, as the accumulation potential is moved to more negative potentials and is about one-sixth the size for accumulation at -0.4 V. Existing knowledge of the organic chemistry of cephalosporins indicates that the accumulation must involve an aminolysis reaction of the unprotonated PLL with the beta-lactam ring of the ceftazidime. The limit of detection (3 sigma) in standard solutions was calculated to be 1 x 10(-10) mol l(-1). The detection limit in buffer solution containing 1% of urine was calculated to be 5 x 10(-9) mol l(-1), i.e. 5 x 10(-6) mol l(-1) in the urine. (C) 1999 Elsevier B.V. B.V. AU rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes an electroanalytical method for determining gold(I) thiomalate, aurothiomalate, widely used for treatment of reumatoid arthiritis, using a screen-printed carbon electrode (SPCE). Aurothiomalate (AuTM) was determined indirectly at the same electrode by accumulating it first at -1.5 V vs. printed carbon. At this potential in the adsorbed state, the AuTM is reduced to Au(0), which is then oxidized at two steps at -0.22 V and +0.54 V on SPCE. Using optimized conditions of 60 s deposition time, -1.5 V (vs. printed carbon) accumulation potential, 100 mV s(-1) scan rate, linear calibration graphs can be obtained by monitoring the peak at +0.54 V for AuTM in HCl 0.1 mol L-1 from 1.43 x 10(-6) to 1.55 x 10(-4) mol L-1. A limit of detection obtained was 6.50 x 10(-7) mol L-1, and the relative standard deviation from five measurements of 3.0 x 10(-5) mol L-1 AuTM is 4.5%. The method was successfully applied for AuTM determination in human urine sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for the total mercury determination in fish and shrimps employing chronopotentiometric stripping analysis on gold film electrodes is described. Fish and shrimp tissues were digested using a microwave oven equipped with closed vessels. We developed a microwave heating program which decomposed all the samples employing diluted nitric acid and hydrogen peroxide. The proposed method was validated by analyzing a certified reference material and then applied for different fish species from fresh water and seawater acquired in local markets of São Paulo city, Brazil. The Brazilian legislation establishes 0.5 and 1 mg per kilogram of fish as upper limit of mercury for omnivorous and predator species, respectively. Except for blue shark tissues, the mercury content was situated below 0.5 mu g g(-1) for all the analyzed samples. The detection limit of the proposed method was calculated as 5 ng g(-1) of sample utilizing 5 minutes of electrodeposition (+300 mV vs. Ag/AgCl) on the gold electrode. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new, versatile, and simple method for quantitative analysis of zinc, copper, lead, and cadmium in fuel ethanol by anodic stripping voltammetry is described. These metals can be quantified by direct dissolution of fuel ethanol in water and subsequent voltammetric measurement after the accumulation step. A maximum limit of 20% (v/v) ethanol in water solution was obtained for voltammetric measurements without loss of sensitivity for metal species. Chemical and operational optimum conditions were analyzed in this study; the values obtained were pH 2.9, a 4.7-mum thickness mercury film, a 1,000-rpm rotation frequency of the working electrode, and a 600-s pre-concentration time. Voltammetric measurements were obtained using linear scan (LSV), differential pulse (DPV), and square wave (SWV) modes and detection limits were in the range 10(-9)-10(-8) mol L-1 for these metal species. The proposed method was compared with a traditional analytical technique, flame atomic absorption spectrometry (FAAS), for quantification of these metal species in commercial fuel ethanol samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive method is described for the determination of cefaclor by cathodic stripping voltammetry at the hanging mercury drop electrode. cefaclor is accumulated at the electrode surface as a mercury salt, which is reduced at -0.67 V. The optimum accumulation potential and accumulation time were +0.15 V and up to 180 s, respectively. Linear calibration graphs were obtained between 3.9 mu g.L-1 to 39 mu g.L-1 and the limit of determination was evaluated to be 1.9 mu g.L-1. The method was applied successfully to the determination of cefaclor in pharmaceutical formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cathodic stripping voltammetry (CSV) and accumulation at the hanging mercury drop electrode are reviewed briefly. Proposals in a recent IUPAC technical report are considered. Three recent developments in CSV are discussed: the adaptation of CSV methods developed for use with the hanging mercury drop electrode for use with screen-printed carbon electrodes in disposable sensors, the use of reactive accumulation, and the chemometric use of kinetic methods of determination with pulse methods in CSV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cefaclor is not reducible at a mercury electrode, but it can be determined polarographically and by cathodic stripping voltammetry as its initial alkaline degradation product which is obtained in high yield by hydrolysis of cefaclor in Britton-Robinson (B-R) buffer pH 10 at 50 degrees C for 30 min (reduction peak at pH 10, -0.70 V). Differential pulse polarographic calibration graphs are linear up to at least 1 x 10(-4) mol l(-1). Recoveries of 93% of the cefaclor (n = 3) were obtained from urine spiked with 38.6 mu g ml(-1) using this polarographic method with 1 ml urine made up to 10 ml with pH 10 buffer. Using cathodic stripping voltammetry and accumulating at a hanging mercury drop electrode at -0.2 V for 30 s, linear calibration graphs were obtained from 0.35 to 40 mu g ml(-1) cefaclor in B-R buffer pH 10. A relative standard deviation of 4.2% (eta = 5) was obtained, and the limit of detection was calculated to be 2.9 ng ml(-1). Direct determination of cefaclor in human urine (1 ml of urine was made up to 10 ml with pH 10 buffer) spiked to 0.39 mu g ml(-1) was made (recovery 98.6%). (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cromoglycate is accumulated on a poly-L-lysine (PLL) modified carbon electrode best from pH 4 solution, where it is anionic and the PLL is cationic, and at which pH the cromoglycate gives a good reduction peak at -0.82 V. The PLL film can be regenerated readily by washing the electrode with 3 M sodium hydroxide solution, in which the PLL is deprotonated. Regeneration of the film is not required as frequently when larger amounts of PLL are incorporated into it. This allows standard addition procedures to be carried out without regenerating the electrode. Linear calibration graphs have been obtained typically in the range 0.1 - 1.5 mug ml(-1). Detection limits have been calculated to be 10 ng ml(-1). The standard addition method has been applied satisfactorily to diluted urine solutions. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remazol brilliant orange 3R shows only a voltammetric peak for the reduction of the azo group. No peak was observed for the reduction of the sulfatoethylsulfone or vinylsulfone reactive groups. The reduction of a pre-protonated ate group involving a two-electron process, gives a hydrate derivative in acidic solution. In alkaline solution the reduction process occurs at more negative potential with the formation of an unstable hydrate compound which decomposes via HN-NH bond cleavage and loss of a sulfate group. Optimum conditions are given for the cathodic stripping voltammetric determination of dir: dye in aqueous solution. The optimum accumulation potential and time were 0 V and up to 60 s, respectively. Linear calibration graphs were obtained from 30 to 300 ng ml(-1) in pH 4 and 6.2 to 62 ng ml(-1) in pH 10. The limit of determination obtained was 1.5 ng ml(-1) (pH 10). The coefficient of variation was 2.6% (n = 7) at 62 ng ml(-1) of the reactive dye. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two reactive dyes, C.I. Reactive Red 120 (RR120) and C.I. Reactive Green 19 (RG19), each bearing two azo groups as the chromophoric moiety and two monochloro-s-triazine groups as reactive groups, can be detected at nanomolar levels using cathodic stripping voltammetry. Linear calibration graphs were obtained for both reactive dyes, from 0.015 to 0.14 mu mol l(-1) for RR120 in pH 4 buffer and from 0.012 to 0.26 mu mol l(-1) for RG19 in pH 3 buffer, using a preconcentration at 0 V during 180 and 240 s on the mercury electrode, respectively. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)