28 resultados para storage systems
Resumo:
Report some of the changes in production and consumption occurring in the state of São Paulo. through the restructuring in motion systems, logistics and standards and taxation, as well as the impacts on urban spaces through new economic dynamics, imposed by the demands of corporate, is the purpose of this article. The decentralization of production and consumption towards the interior was made possible by the combination of hierarchical and ordered some basic elements such as technological innovations (ways and means of transport) and organizational (logistics, standards and taxation) which optimized the flow territorial state São Paulo. It is noteworthy, therefore: 1) the improvement of logistics as a strategy, planning and management of transport, storage and communications (including the granting of public services to private), 2) the technological improvement and expansion of motion systems (infrastructure, means of transport) and 3) the systems of rules and regulations through taxation and deregulation affect the circulatory system of a given space. Thus, both systems aims to disentangle the economic flows (goods, services, information, capital and people) and provide a more fluid territorial. The impacts on the State of São Paulo, mainly through its economic dynamics, revert positively and negatively, by changing the way one thinks and performs planning.
Resumo:
Transformation of pesticides is directly related to the environmental conditions during application and transport of these compounds in the ecosystem. Rice fields include peculiar conditions, relatively high temperatures and wet conditions, leading to degradation processes, different from that observed in other agricultural systems. This article presents the degradation routes of some characteristic rice insecticides and herbicides under field conditions. A compilation of the pesticides that are usually applied during rice cultivation is included, with their main physico-chemical parameters. The stability of the pesticides by solid phase extraction systems during storage of rice samples is also discussed.
Resumo:
A new process for the surface modification of hydrogen storage intermetallic particles used as anode material in secondary batteries is proposed in this article. The copper oxide particles coverage obtained by the sol-gel method is proposed to produce, under operational conditions of a Ni-MH battery, a metallic framework that tolerates the volume changes in charge/discharge cycles and does not inhibit the hydrogen absorption. Furthermore it was noticed an enhancement on the discharge capacity of the electrode material that can be related to a new hydrogen storage phase or to an inhibition of the surface oxidation promoted by the film coverage.
Resumo:
Objectives: The purpose of the this study was to evaluate the influence of thermocycling on shear bond strength on bovine enamel and dentin surfaces of different adhesive systems. Methods: Thirty sound bovine incisors were sectioned in mesiodistal and inciso-cervical direction obtaining 60 incisal surfaces (enamel) and 60 cervical surfaces (dentin). Specimens were randomly assigned to 3 groups of equal size (n = 40), according to the adhesive system used: I-Single Bond; II-Prime & Bond NT/NRC; III-One Coat Bond. After 24-h storage in distilled water at 37 o C, each main group was divided into two subgroups: A- specimens tested after 24 h storage in distilled water at 37°C; B - specimens submitted to thermocycling (500 cycles). Shear bond strength tests were performed. Data were submitted to ANOVA and Tukey test. Results: Means (MPa) of different groups were: I-AE-16.96, AD-17.46; BE-21.60, BD-12.79; II-AE-17.20, AD-11.93; BE-20.67, BD-13.94; III-AE-25.66, AD-17.53; BE-24.20, BD-19.38. Significance: Thermocycling did not influence significantly the shear bond strength of the tested adhesive systems; enamel was the dental substrate that showed larger adhesive strength; One Coat Bond system showed the best adhesive strength averages regardless of substrate or thermocycling. © 2005 Springer Science + Business Media, Inc.
Resumo:
Purpose: This study evaluated the effect of surface conditioning methods and thermocycling on the bond strength between a resin composite and an indirect composite system in order to test the repair bond strength. Materials and Methods: Eighteen blocks (5 x 5 x 4 mm) of indirect resin composite (Sinfony) were fabricated according to the manufacturer's instructions. The specimens were randomly assigned to one of the following two treatment conditions (9 blocks per treatment): (1) 10% hydrofluoric acid (HF) for 90 s (Dentsply) + silanization, (2) silica coating with 30-Ìm SiOx particles (CoJet) + silanization. After surface conditioning, the bonding agent was applied (Adper Single Bond) and light polymerized. The composite resin (W3D Master) was condensed and polymerized incrementally to form a block. Following storage in distilled water at 37°C for 24 h, the indirect composite/resin blocks were sectioned in two axes (x and y) with a diamond disk under coolant irrigation to obtain nontrimmed specimens (sticks) with approximately 0.6 mm2 of bonding area. Twelve specimens were obtained per block (N = 216, n = 108 sticks). The specimens from each repaired block were again randomly divided into 2 groups and tested either after storage in water for 24 h or thermocycling (6000 cycles, 5°C to 55°C). The microtensile bond strength test was performed in a universal testing machine (crosshead speed: 1 mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using two-way ANOVA (α = 0.05). Results: Both surface conditioning (p = 0.0001) and storage conditions (p = 0.0001) had a significant effect on the results. After 24 h water storage, silica coating and silanization (method 2) showed significantly higher bond strength results (46.4 ± 13.8 MPa) than that of hydrofluoric acid etching and silanization (method 1) (35.8 ± 9.7 MPa) (p < 0.001). After thermocycling, no significant difference was found between the mean bond strengths obtained with method 1 (34.1 ± 8.9 MPa) and method 2 (31.9 ± 7.9 MPa) (p > 0.05). Conclusion: Although after 24 h of testing, silica coating and silanization performed significantly better in resin-resin repair bond strength, both HF acid gel and silica coating followed by silanization revealed comparable bond strength results after thermocycling for 6000 times.
Resumo:
Soil is an essential resource for life and its properties are susceptible to be modified by tillage systems. The impact of management practices on soil functions can be assessed through a soil quality index. It is interesting to assess soil quality in different soil types. Therefore, the aim of this study was to determine the soil quality index of a Paleudult under different management conditions and sunflower culture. The experiment was carried out in Botucatu (SP, Brazil), in an 11-year non-tilled area used for growing soybean and maize during summer and black oat or triticale in winter. Four management systems were considered: no-tillage with a hoe planter (NTh), no-tillage with a double-disk planter (NTd), reduced tillage (RT) and conventional tillage (CT). Soil samples were taken from the planting lines at harvest time. To determine the soil quality indices, following the methodology proposed by Karlen and Stott (1994), three main soil functions were assessed: soil capacity for root development, water storage capacity of the soil and nutrient supply capacity of the soil. The studied Paleudult was considered a soil with good quality under all the observed management systems. However, the soil quality indices varied between treatments being 0.64, 0.68, 0.86 and 0.79 under NTh, NTd, RT and CT, respectively. Physical attributes such as resistance to penetration and macroporosity increased the soil quality index in RT and CT compared to NTh and NTd. The soil quality indices obtained suggested that the evaluated soil is adequate for sunflower production under our study conditions. In view of the SQI values, RT is the most suitable management for this site since it preserves soil quality and provides an acceptable sunflower yield. © 2011 Elsevier B.V.
Resumo:
In the present study, different freezing systems (Styrofoam box and Mini Digitcool ZH 400) and storage volumes (0.5- and 0.25-mL straws) were compared with regard to sperm kinetics and plasma membrane integrity of frozen and thawed semen. For that, three ejaculates from four animals were frozen in Styrofoam box and Mini Digitcool ZH 400 machine. The 0.5-mL straws were thawed at 46°C for 20 seconds, and the 0.25-mL straws were thawed at 46°C for 12 seconds. Statistical analysis was performed using program R of descriptive analysis box plot, followed by analysis of variance using PROC MIXED of SAS 9.1 package. Variances of 5% were considered as different. There was no interaction between the straw sizes and volumes; however, statistical differences were observed between the semen storage volumes. The 0.5-mL straws had higher total motility (%), progressive motility (%), average path velocity (μm/s), straight-line velocity (μm/s), curvilinear velocity (μm/s), and rapid sperm percentage (%) than the 0.25-mL straws. However, plasma membrane integrity analysis did not differ between the two straws. Thus, it is possible to conclude that equine sperm cryopreserved in 0.5-mL straws has better sperm kinetics than when stored in 0.25-mL straws. Additionally, it is possible to conclude that automated systems that enable faster freezing rates result in a seminal quality that is similar to the one obtained by the conventional system using Styrofoam boxes. © 2013 Elsevier Inc.
Resumo:
This study investigated the physicochemical properties of the new formulation of the glass ionomer cements through hardness test and degree of conversion by infrared spectroscopy (FTIR). Forty specimens (n = 40) were made in a metallic mold (4 mm diameter × 2 mm thickness) with two resin-modified glass ionomer cements, Vitrebond™ and Vitrebond™ Plus (3M/ ESPE). Each specimen was light cured with blue LED with power density of 500 mW/cm2during 30 s. Immediately after light curing, 24h, 48h and 7 days the hardness and degree of conversion was determined. The Vickers hardness was performed by the MMT-3 microhardness tester using load of 50 gm force for 30 seconds. For degree of conversion, the specimens were pulverized, pressed with KBr and analyzed with FT-IR (Nexus 470). The statistical analysis of the data by ANOVA showed that the Vitrebond™ and Vitrebond™ Plus were no difference significant between the same storage times (p > 0.05). For degree of conversion, the Vitrebond™ and Vitrebond™ Plus were statistically different in all storage times after light curing. The Vitrebond™ showed higher values than Vitrebond™ Plus (p < 0.05). The performance of Vitrebond™ had greater results for degree of conversion than Vitrebond™ Plus. The correlation between hardness and degree of conversion was no evidence in this study.
Resumo:
Considering the worldwide consumption of coffee, it is natural that throughout the history many people have dedicated the research to markers that contribute somehow on gauging its quality. This research aimed to evaluate the biochemical performance of arabica coffee during storage. Coffee in beans (natural) and in parchment (pulped) dried in concrete terrace and in dryer with heated air were packed in jute bags and stored in not controlled environmental conditions. Enzymatic activities of superoxide dismutase, catalase, peroxidase, polyphenoloxidase, esterase and lipoxygenase in coffee grains were evaluated at zero, three, six, nine and twelve months by means of electrophoresis. Independently of the drying method, the activity of isoenzymatic complexes highlighted deteriorative processes in stored grains of coffee. The treatments 60/40º C and 60º C used to reduce the water content imposed a greater stress condition, accelerated metabolism of natural coffee in the storage with decreased activity of defense mechanisms due to latent damage in these grains. Natural coffees are more sensible to high drying temperatures and its quality reduces faster than pulped coffee in the storage.
Resumo:
The spin injector part of spintronic FET and diodes suffers from fatigue due to rising heat on the depletion layer. In this study the stiffness of Ga1-xMnxAs spin injector in terms of storage modulus with respect to a varying temperature, 45 degrees C <= T <= 70 degrees C was determined. It was observed that the storage modulus for MDLs (Manganese Doping Levels) of 0%, 1% and 10% decreased with increase in temperature while that with MDLs of 20% and 50% increase with increase in temperature. MDLs of 20% and 50% appear not to allow for damping but MDLs <= 20% allow damping at temperature range of 45 degrees C <= T <= 70 degrees C. The magnitude of storage moduli of GaAs is smaller than that for ferromagnetic Ga1-xMnxAs systems. The loss moduli for GaAs were found to reduce with increase in temperature. Its magnitude of reducing gradient is smaller than Ga1-xMnxAs systems. The two temperature extremes show a general reduction in loss moduli for different MDLs at the study temperature range. From damping factor analysis, damping factors for ferromagnetic Ga1-xMnxAs was found to increase with decrease in MDLs contrary to GaAs which recorded the largest damping factor at 45 degrees C <= T <= 70 degrees C Hence, MDL of 20% shows little damping followed by 50% while MDL of 0% has the most damping in an increasing trend with temperature. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: This study evaluated the durability of bond strength to enamel using total-etch (Single Bond/SB) and self-etch (Clearfil SE Bond/CSEB) adhesives associated with neody-mium: yttrium-aluminu- garnet (Nd:YAG) laser irradiation through the uncured adhesives.Methods: Bovine incisors were worn to expose an area of enamel and were divided into four groups: group 1 (control) SB + polymerization; group 2 (control) CSEB + polymerization; group 3 (laser) - B + Nd:YAG laser (174.16 J/cm(2)) + polymerization; and group 4 (laser) CSEB + Nd:YAG (174.16 J/cm(2)) + polymerization. Blocks of composite were fabricated and stored for 24 hours or 12 months, sectioned into beams, and submitted to microtensile tests. Results were analyzed by three-way analysis of variance (ANOVA) (adhesive, technique, and storage time) and Tukey tests.Results: ANOVA revealed significant differences for adhesive 3 technique and technique 3 storage time (p<0.05). The mean values (MPa) for interaction adhesive x technique (standard deviation) were as follows: SB/control = 35.78 (6.04)a; SB/laser = 26.40 (7.25)b, CSEB/control = 26.32 (5.71)b, CSEB/laser = 23.90 (7.49)b. For interaction technique x storage time the mean values were as follows: control/24 hours = 32.58 (6.49)a; control/12 months = 29.52 (8.38)a; laser/24 hours = 29.37 (5.71)a; laser/12 months = 20.92 (6.5)b. Groups with the same letters showed no statistically significant differences.Conclusion: Scanning electron microscope analysis showed evident areas of micromorphological alterations in lased samples after 12 months of water storage. Nd: YAG laser irradiation of enamel through unpolymerized totaletch adhesive significantly reduced bond strength compared with the control. Bond strength decreased when enamel samples irradiated with Nd: YAG laser through unpolymerized adhesives were stored in water for 12 months.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)